Aktuelle Forschungsprojekte

Image Prolatent
Image Innovativer Helium-Kleinverflüssiger
Image In-Situ-Untersuchungen zum Quellverhalten von Polymerwerkstoffen unter erhöhten Drücken und Temperaturen
Image Primäre Lärmreduktion an Ventilatoren
Image Pulse-Tube-Kühler mit Hermetikverdichterantrieb
Image Bewertungsverfahren für Systeme mit Sekundärluft und Raumwirkung
Image Prüfverfahren und Prüfvorrichtungen für ABEK Filterelemente
Image Entwicklung und Erprobung des Einsatzes von Phasenwechselmaterialien an WEMS (Window Energy Management Systems)
Image Kältemittel- und Kältemaschinenöl-Untersuchungen
Image Platz-integrierte Sekundärluft-Aufbereitung
Image Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen
Image Kryoflüssigkeitspumpen für tiefkalt verflüssigte Gase wie z.B. LIN, LOX, LHe, LH2, LNG, LAr
Image Lebensdauerprognose von Hermetikverdichtersystemen
Image Akustik und Schwingungen
Image Wasser-Luft-Kühler-Kit für Helium Kompressoren in der Kryotechnik
Image Wärmeübergang in turbulenten Ferro-Nanofluiden unter dem Einfluss von Magnetfeldern

Sie befinden sich hier:   /  Startseite


Innovativer magnetbasierter Parawasserstoffkonverter

Euronorm GmbH

Dr. rer. nat. Erik Neuber

+49-351-4081-5122

Magnetische Gasseparation der Wasserstoffisomere

Molekularer Wasserstoff existiert in Form zweier verschiedener Isomere, welche sich durch die Konfiguration des Kernspins unterscheiden: Ortho- und Parawasserstoff, wobei letzterer bei Raumtemperatur nur 25% des Gesamtgases ausmacht. Zugleich wird Parawasserstoff in konzentrierter Form insbesondere in der Medizin und Chemie zur weitverbreiteten Methode der Hyperpolarisation (sog. PHIP – Parawasserstoff-induzierte Polarisation) genutzt, welche in MRT- bzw. NMR-Anlagen zur Kontraststeigerung zum Einsatz kommt.
Die Standardverfahren zur Herstellung dieses Spin-Isomers basieren jedoch allesamt auf kryogenen Methoden, welche einen verhältnismäßig hohen Energie- und Wartungsaufwand besitzen. Von daher besteht der Bedarf nach einer kostengünstigen und effizienten Möglichkeit zur Anreicherung von Parawasserstoff bei Raumtemperatur, so dass dieser im Anschluss direkt weiter verwendet werden kann.

Projektziele

  • Entwicklung eines innovativen Ortho-Para-Konverters, welcher bei Raumtemperatur nach dem Prinzip der magnetischen Gasseparation arbeitet;
  • Vermessung der Separationsfähigkeit des ausgewählten Prinzips bei Raumtemperatur und Optimierung des resultierenden Effektes sowie
  • Anreicherung auf 99% Parawasserstoff bei variablem Volumenstrom (mindestens 4 Standard-Liter pro Minute).

Ihre Anfrage zum Projekt

Weitere Projekte

Image

Massenspektrometer

Bestimmen der Zusammensetzung von Gasgemischen im Hoch- oder Ultrahochvakuumbereich

Image

Zug- und Druckprüfung

Ermittlung der Streckgrenze, Zugfestigkeit und Bruchdehnung

Image

Untersuchung von materialabhängigen Parametern

Untersuchung der Permeationsverhalten

Image

Cool Up

Upscaling Sustainable Cooling

Image

Beladungssensor für Adsorptionsfilter

Sensorsystem zur Durchbruchserkennung bei der Gasabscheidung