Aktuelle Forschungsprojekte

Image Prüfverfahren für Hochtemperaturewärmepumpen-Öle
Image Abluftbehandlungsmethode zur Abscheidung von Spurenstoffen in neuen Produktionsverfahren
Image RauMLuft.ROM | ROM - basierte Vorhersage von Raumluftströmungen mit maschinellem Lernen
Image Befeuchtungsanlage für hochreine Gase
Image Elektrische Komponenten in Kältekreisläufen
Image ZeroHeatPump
Image Filterprüfungen
Image StellarHeal – Wound Healing in Space and on Earth
Image Thermostatische Expansionsventile
Image Leistungsprüfung an Verflüssigungssätzen
Image Wasser-Luft-Kühler-Kit für Helium Kompressoren in der Kryotechnik
Image Tieftemperatur-Materialprüfkammer
Image Phasenauflösende numerische Simulation von Suspensionen
Image In-Situ-Untersuchungen zum Quellverhalten von Polymerwerkstoffen unter erhöhten Drücken und Temperaturen
Image Strahltechnikentwicklung mit Wassereis-Strahlmittel
Image Korrosionsinhibitor für Absorptionskälteanlagen

Sie befinden sich hier:   /  Startseite


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte

Image

Kälte-Erzeugung und Kältespeicherung

mit Nutzung der Lösungsenthalpie von Salz

Image

CO2-Trockeneis-Sublimation zur Tieftemperaturkühlung

Entwicklung eines Sublimations-Wärmeübertragers

Image

Mikrowärmeübertrager in der Kältetechnik

3D-Fertigung von Mikrowärmeübertragern

Image

Entwicklung hydrolysebeständiger Hotmelt-Klebeverbunde für Prozessluft- und Klimaanwendungen unter Einhaltung hygienischer Anforderungen

Hygienische Optimierung und Langzeitstabilisierung membranbasierter Wärme- und Stoffübertrager

Image

Intelligente innovative Stromversorgung für supraleitende Spulen

Kompakte leistungsfähige Stromversorgung mit 4-Quadrantensteller