Aktuelle Forschungsprojekte

Image Lebensdauerprognose von Hermetikverdichtersystemen
Image Magnetfeldbeeinflusster Schmelzpunkt des Wassers
Image Seminar Lecksuche / Dichtheitsprüfung in der Kältetechnik
Image Messung Isolierverpackung
Image Elektronische Multifunktionsmodule für kryogene Anwendungen
Image Intelligente innovative Stromversorgung für supraleitende Spulen
Image Füllmengenreduzierung
Image Korrosionsinhibitor für Absorptionskälteanlagen
Image Verhalten mehrphasiger kryogener Fluide
Image Ressourcenoptimierung und Beschleunigung von Strömungssimulationen mittels KI
Image Energieeffizienzbewertung und optimierte Betriebsführung von gewerblichen Kälteanlagen
Image Druckfestigkeitsprüfung von CO2 Anlagen
Image Modulares Speichersystem für solare Kühlung
Image Kältemengenzähler
Image Leistungsprüfung an Verflüssigungssätzen
Image Prüfverfahren für Außenluftfilter

Sie befinden sich hier:   /  Startseite


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte

Image

Industrie-4.0-Membran-Wärme-und-Stoffübertrager (i-MWÜ4.0)

Vernetzung des gesamten Lebenszyklus einer multifunktionalen RLT-Komponente

Image

3D - Strömungssensor

Anemometer für 3-dimensionale Strömungsmessung

Image

Automatisierte Gasschleife

Füllmengenreduktion für Kältemittel

Image

Stoffdatenmodule

Stoffdatensoftware für Kältemittel