Aktuelle Forschungsprojekte

Image Druckfestigkeitsprüfung von CO2 Anlagen
Image Panel mit indirekter Verdunstungskühlung über Membran
Image Luft-Wasser Wärmepumpen
Image Textiler Wärme- und Stoffübertrager in KVS-Systemen
Image Thermosyphon mit in situ beschichtetem Verdampfer
Image Pulse-Tube-Kühler mit Hermetikverdichterantrieb
Image Wärmeübergang in Ferro-Nanofluiden unter Magnetfeldeinfluss
Image Prüfverfahren und Prüfvorrichtungen für ABEK Filterelemente
Image Photometrisches Messverfahren zur Bestimmung der Luftwechselrate in Innenräumen - IO-Scan
Image Zertifizierung von effizienten Klima- und Lüftungsanlagen durch das neue „Qualitätssiegel Raumlufttechnik“ für Nichtwohngebäude
Image Schalldämpfer mit integrierten Abgaswärmeübertrager
Image Entwicklung eines schnellen Rechenverfahrens..
Image Prüfverfahren zur dynamischen Alterung von Werkstoffen
Image RauMLuft.ROM | ROM - basierte Vorhersage von Raumluftströmungen mit maschinellem Lernen
Image CO2-Trockeneis-Sublimation zur Tieftemperaturkühlung
Image Ultradichte Kryoröhrchen als neuartige Primärpackmittel - Ultrakryo

Sie befinden sich hier:   /  Startseite


Wasserstoff- und Methan-Versuchsfeld am ILK

BMWi

Dr. rer. nat. Andreas Kade

+49-351-4081-5117

Gleichzeitig Drücke bis 1000 bar, Temperaturen bis –253°C

Am ILK Dresden wird ein innovatives Versuchsfeld für kryogene Hochdruckanwendungen mit Wasserstoff (H2), Methan (CH4) und Methan-Wasserstoff-Gemischen betrieben. Dieses ermöglicht die Durchführung verschiedener Dienstleistungen, unter anderem:

  • Bauteiltests und ‑qualifizierungen bei Temperaturen von 20 K (−253 °C) bis Raumtemperatur und gleichzeitig Drücken von Hochvakuum bis 1000 bar (bspw. Dichtungstests und Permeationstests).
  • Untersuchung von Be- und Entladevorgängen an kryogenen oder bei Raumtemperatur betriebenen Wasserstoff- und Methanspeichern (bspw. Adsorberspeicher und kryokomprimierter Wasserstoff).
  • Untersuchung von Katalysatoren für die Ortho-Para-Umwandlung von Wasserstoff.
  • Langzeitauslagerung von Bauteilen und Komponenten in Wasserstoff- oder Methanatmosphäre bei bis zu +200 °C und 160 bar zur Untersuchung von Degradationseffekten (bspw. Wasserstoffversprödung).
  • Neu- und Weiterentwicklung von verschiedenen Wasserstoff- und Methan-Komponenten (bspw. Rückkühlsysteme, Latentwärmespeicher, kryogene Druckspeicher, Wärmeübertrager und kryogene Pumpen).
  • Realisierung von Gesamtsystemen für Wasserstoff und Methan.

Das folgende Diagramm zeigt die Wasserstoff-Speicherdichte in Abhängigkeit von Druck und Temperatur:


Ihre Anfrage zum Projekt

Weitere Projekte

Image

Ultradichte Kryoröhrchen als neuartige Primärpackmittel - Ultrakryo

Minimierung der Kontamination bei der kryogenen Lagerung biologischer Proben

Image

Apparatur und Verfahren zur Degradationsprüfung

Auslegung von Prüfverfahren für biologisch abbaubare Medizinprodukte

Image

All-In-One Gerät für Gefriertrocknung und Biomaterialherstellung

mit automatisierter Einfrier- und Sterilisationsoption

Image

Chemische Wasserbinder/Enteiser für Kältekreisläufe - CheWa

Energetisch und Bauteiloptimierte Kältekreisläufe kleiner Leistung