Current research projects

Image Multifunctional electronic modules for cryogenic applications
Image Filter Tests
Image Air-flow test rig for fan characteristic measurement
Image Testzentrum PLWP at ILK Dresden
Image Calibration of Low Temperature Sensors
Image Calibration leak for the water bath leak test
Image Certifiable connection types in cryogenics
Image Low temperature – test facilities
Image Refrigerants, lubricants and mixtures
Image In-situ investigation concerning the swelling behaviour of polymer materials under elevated pressures and temperatures
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Low noise and non metallic liquid-helium cryostat
Image Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K
Image Ice Slurry Generation
Image Measurements on ceiling mounted cooling systems
Image Measurement of insulated packaging

You are here:   /  Home


Innovative Parahydrogen Generator Based on Magnets

Euronorm GmbH

Erik Neuber

+49-351-4081-5122

Magnetic Gas Separation of the Hydrogen Isomers

Molecular hydrogen occurs in two isomeric forms which differ in their configuration of the nuclear spin: orthohydrogen and parahydrogen, whereas the latter accounts for only 25% of the whole gas at room temperature. Contrary to this, parahydrogen in its concentrated form is utilised especially for hyperpolarisation (so-called PHIP – Parahydrogen Induced Polarisation), which is a widespread method in the fields of medicine and chemistry to enhance the contrast of MRI and NMR apparatus.
However, all procedures for the production of this spin isomer are based upon cryogenic methods, which have comparatively high expenses for energy and maintenance. Because of this, there exists the demand for a cheap and efficient method to enrich parahydrogen for direct use in successive applications.

Project Goals

  • Development of an innovative ortho–para converter, which works at room temperature by using the principle of magnetic gas separation;
  • Measurement of the separation ability of the chosen principle at room temperature and optimisation of the resulting effect and
  • Enrichment up to 99% of parahydrogen at a variable volume flow (pursued are at least 4 standard litres per minute).

Your Request

Further Projects