Current research projects

Image 3D - Air flow sensor
Image Innovative Parahydrogen Generator Based on Magnets
Image Calibration leak for the water bath leak test
Image Mass Spectrometer
Image Computational fluid dynamics CFD
Image Electrical components in refrigeration circuits
Image Thermostatic Expansion Valves
Image Performance tests of condensing units
Image Cryostats, Non-Metallic and Metallic
Image Investigation according to DIN EN ISO 14903
Image Tensile and compression testing
Image All-in-one device for freeze-drying and production of biomaterial
Image Certifiable connection types in cryogenics
Image In-situ investigation concerning the swelling behaviour of polymer materials under elevated pressures and temperatures
Image Verification of storage suitability of cryo tubes
Image Low noise and non metallic liquid-helium cryostat

You are here:   /  Home


Optimizing HVAC operation with machine learning

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in progress

Intelligent control of HVAC systems – high comfort with low energy demand

Motivation

During operation, the energy efficiency of many HVAC systems remains considerably below the value predicted when planning. One reason is that especially complex systems with multiple generators, storages and consumer locations frequently are not operated optimally.

Aim of the project

Development of a tool for optimizing the operation of HVAC systems which uses machine learning (ML) methods and data from the digital building model (Building Information Model, BIM):

  • Optimization goal: high energy efficiency with at the same time high comfort for users

  • Saving operating costs, energy and carbon dioxide emissions due to increased efficiency

  • Continuous autonomous improvement of the ML algorithm by learning from new measured data with auto-adaptive reaction to changing conditions (building, system, use, smart meter for real time billing of energy and media, etc.)

Approach

  • Reproduction of the real system’s thermal-energetic behaviour in the machine learning system, training with BIM data, measured data and a digital twin of the real system
  • Application of ML methods for load forecasting (weather, usage patterns)

  • Automatic classification of utilisation scenarios, fault detection

  • Integration of available tools for efficient simulation of indoor air flows and for calculating energy demands

  • Co-Validation of optimization tool, experimental studies and digital twin

Interested?

Please get in touch with us if you are interested in a cooperation: klima@ilkdresden.de

 


Your Request

Further Projects

Image

Brine (water)-water heat pump

Test according DIN EN 14511 and 14825

Image

High temperature heat pump

Using waste heat from industrial processes

Image

Air-water heat pumps

Test according DIN EN 14511 and 14825

Image

Micro heat exchangers in refrigeration

3D-printing of micro heat exchangers

Image

Electrochemical decontamination of electrically conducting surfaces „EDeKo II“

Improvement of sanitary prevention by electrochemical decontamination