Current research projects

Image Thermostatic Expansion Valves
Image Heat2Power
Image Software for test rigs
Image Computational fluid dynamics CFD
Image Air-flow test rig for fan characteristic measurement
Image Electrical components in refrigeration circuits
Image Cold meter
Image Calibration leak for the water bath leak test
Image Combined building and system simulation
Image Panel with indirect evaporative cooling via membrane
Image Industry 4.0 membrane heat and mass exchanger (i-MWÜ4.0)
Image Investigation of materials
Image Certifiable connection types in cryogenics
Image Low Temperature Tribology
Image Laseroptical measurement
Image Range of services laboratory analyses

You are here:  Home /  Research and Development


Development of a Cryogenic Magnetic Air Separation Unit

Federal Ministry for Economic Affairs and Climate Action

02/2022-07/2024

Erik Neuber

+49-351-4081-5122

Oxygen Enrichment by Applied Cryogenic Magnetohydrodynamics

Nowadays, for oxygen enrichment from air, various commercial options are available, among other things, pressure swing adsorption, cryogenic rectification, and membranes. Although well-established, most of these methods do have a relative high specific energy demand for small-to-medium production rates (in this context: 0–100 TPD (tonnes per day) of oxygen) and relative high purities (at least 90 vol% of oxygen) [1].

To close this gap, ILK Dresden intends to develop and optimise an efficient cryogenic magnetic air separation unit that enables oxygen enrichment by means of OGMS (open-gradient magnetic separation). Motivated by provisional first-shot experiments, for a first setup, the following parameters are being targeted:

  • Operating pressure: 1–3 bar(a);
  • Degree of purity: 95 vol% oxygen;
  • Production rate: 5 standard l/min oxygen;
  • Specific energy demand: 160–180 kWh/t oxygen;
  • Required time for start-up: 30–60 min;
  • Continuous operation;
  • Less maintenance requirements than pressure swing adsorption;
  • Comparable space requirements as pressure swing adsorption.

Moreover, based on the experimental results, the scalability of the system for higher production rates of up to 100 TPD oxygen shall be analysed.

For this patented technology, ILK Dresden is looking for industrial partners that have interest in financial participation, specific applications, or further developments.

Granted Patent:

DE 10 2021 109 146 A1


Your Request

Further Projects - Research and Development

Image

Performance tests of condensing units

Does your condensing unit perform well?

Image

State of system and failure analyses

Cause of the failure unknown?

Image

Thermostatic Expansion Valves

Does the TXV function correctly?

Image

Testzentrum PLWP at ILK Dresden

Test Fluid-Energy Machines and Components

Image

Performance tests of refrigerant compressors

Does your compressor perform well?