Aktuelle Forschungsprojekte

Image Corrosion inhibitor for ammonia absorption systems
Image Air-water heat pumps
Image Combined building and system simulation
Image Development of test methods and test rigs for stationary integrated refrigeration units
Image Humidifier System for High-Purity Gases
Image High temperature heat pump
Image Innovative Parahydrogen Generator Based on Magnets
Image Heat2Power
Image Multifunctional electronic modules for cryogenic applications
Image Behavior of multiphase cryogenic fluids
Image Testzentrum PLWP at ILK Dresden
Image Measurement of insulated packaging
Image Performance tests of refrigerant compressors
Image Hydrogen and methane testing field at the ILK
Image Reducing the filling quantity
Image Calibration of Low Temperature Sensors

You are here:  Home /  Research and Development


Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K

Dr. rer. nat. Erik Neuber

+49-351-4081-5122

high performance efficiency, environmental friendliness, compactness, cost-effectiveness

The main objective of the R&D project is the development of a cryogenic cooling system capable of recondensing a gas stream of vaporized natural gas back to its liquid form or cooling and/or liquefying other gases to a temperature level of 77 K. The technical solutions for the development of the system aim to provide a number of advantages over existing systems: high performance efficiency, environmental friendliness, compactness, and cost-effectiveness.
The cryogenic refrigeration system will include several innovations and technical solutions:

  • Development of an innovative and cost-effective refrigeration source based on a mixed-refrigerant low-temperature cooler.
  • Detailed calculation and determination of innovative as well as adapted zeotropic refrigerant mixtures, which optimize the energy efficiency of the cooler with respect to its application and ensure environmental friendliness.
  • Determination of the optimal as well as adapted working parameters and dimensions of the cooler and its components with regard to its desired properties (efficiency, fire protection, etc.).

On the basis of the chosen principle of the cryogenic cooling system, a special Linde-Hampson refrigerant mixture cooler was designed, which works with zeotropic refrigerant mixtures and should achieve temperatures of ≤ 100 K, see Figure 1. Thermodynamic calculations of the circuit and the determination of the components of the working mixture and their composition were carried out. For this purpose multiparametric optimization methods as well as gradient methods with different calculation grids were used.
As functional model, a system was implemented which should enable the liquefaction of nitrogen via a second refrigerant circuit. This model was initially tested with simple standard refrigerants and multi-component refrigerant mixtures and works very reliably. The results obtained will be used in the next step to demonstrate the liquefaction of nitrogen.


Your Request

Further Projects - Research and Development

Image

Corrosion inhibitor for ammonia absorption systems

An alternative to chromium(VI) compounds

Image

Development of a Cryogenic Magnetic Air Separation Unit

Oxygen Enrichment by Applied Cryogenic Magnetohydrodynamics

Image

Brine (water)-water heat pump

Test according DIN EN 14511 and 14825

Image

Air-water heat pumps

Test according DIN EN 14511 and 14825

Image

High temperature heat pump

Using waste heat from industrial processes


Contact

Institut für Luft- und Kältetechnik - Gemeinnützige Gesellschaft mbH
Bertolt-Brecht-Allee 20, 01309 Dresden


Reception ILK Dresden

+49-351-4081-5000

+49-351-4081-5099

Image ISO 9001
Bild Zuse Mitglied Bild SIG