Current research projects

Image Practical training, diploma, master, bachelor
Image Pulse-Tube-Refrigerator with sealed compressor
Image CFE-Test of Cooker Hoods
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Verification of storage suitability of cryo tubes
Image Thermostatic Expansion Valves
Image Swirl-free on the move...
Image Brine (water)-water heat pump
Image Development of test methods and test rigs for stationary integrated refrigeration units
Image Lifetime prediction of hermetic compressor systems
Image Helium extraction from natural gas
Image Hydrogen and methane testing field at the ILK
Image Modular storage system for solar cooling
Image Corrosion inhibitor for ammonia absorption systems
Image Service offer for Leak Detection and Tightness Test
Image Electrochemical decontamination of electrically conducting surfaces „EDeKo II“

You are here:  Home /  Research and Development


Innovative Parahydrogen Generator Based on Magnets

Euronorm GmbH

Erik Neuber

+49-351-4081-5122

Magnetic Gas Separation of the Hydrogen Isomers

Molecular hydrogen occurs in two isomeric forms which differ in their configuration of the nuclear spin: orthohydrogen and parahydrogen, whereas the latter accounts for only 25% of the whole gas at room temperature. Contrary to this, parahydrogen in its concentrated form is utilised especially for hyperpolarisation (so-called PHIP – Parahydrogen Induced Polarisation), which is a widespread method in the fields of medicine and chemistry to enhance the contrast of MRI and NMR apparatus.
However, all procedures for the production of this spin isomer are based upon cryogenic methods, which have comparatively high expenses for energy and maintenance. Because of this, there exists the demand for a cheap and efficient method to enrich parahydrogen for direct use in successive applications.

Project Goals

  • Development of an innovative ortho–para converter, which works at room temperature by using the principle of magnetic gas separation;
  • Measurement of the separation ability of the chosen principle at room temperature and optimisation of the resulting effect and
  • Enrichment up to 99% of parahydrogen at a variable volume flow (pursued are at least 4 standard litres per minute).

Your Request

Further Projects - Research and Development

Image

Investigation of material-dependent parameters

Investigation of the permeation behavior

Image

Cool Up

Upscaling Sustainable Cooling

Image

Ionocaloric cooling

Ionocaloric solid-liquid phase cooling process

Image

Low temperature – test facilities

thermal cycling tests at very low temperatures