Aktuelle Forschungsprojekte

Image Innovative Parahydrogen Generator Based on Magnets
Image Filter Tests
Image Helium extraction from natural gas
Image High temperature heat pump
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Testzentrum PLWP at ILK Dresden
Image Verification of storage suitability of cryo tubes
Image Cold meter
Image Low noise and non metallic liquid-helium cryostat
Image Non- invasive flow measurements
Image Development of a Cryogenic Magnetic Air Separation Unit
Image Micro fluidic expansion valve
Image Solar Cooling
Image Ice Slurry Generation
Image Optimizing HVAC operation with machine learning
Image Reducing the filling quantity

You are here:   /  Home


Pulse-Tube-Refrigerator with sealed compressor

Federal Ministry of Economics and Energy

Dipl.-Ing. Gunar Schroeder

+49-351-4081-5129

for mobil use in the hydrogen technology

Within the research project "Mobile single-stage pulse tube cooler with hermetic compressor drive" (project number MF 130012), a compact, robust and low-maintenance cryocooler was developed.
Possible applications for this cryocooler, e.g.,

  • Cooling of mobile high-pressure tanks for storing fuels in cryogenic liquid or supercritical state (e. g. H2 – cryogenic under high pressure)
  • mobile cooling applications < –40°C in medical technology, transport of organic material or samples

The system has a simple and cost-effective design with the following advantages:

  • Mobile use, supply voltage 12 V or 24 V, air-cooled
  • Supply of cryogenic temperatures in the range 60...120 K
  • Low maintenance and long-life, no moving parts in the cold part
  • Programmable temperature curves via microcontroller-based control
  • Low power consumption, in the range of 500 W
  • Low space requirement, arrangement can be adapted
  • Lower costs control through extensive use of commercial components

Figure 1 shows the experimental setup of the cryocooler in a specially adapted orifice double inlet configuration. With the use of a special valve control, 2 W cooling capacity at 77 K and 5 W at 90 K could be achieved. The lowest temperature reached with this single-stage configuration was 68 K. The temperature stability of the system was validated in a test lasting 100 h, see figure 2. In further investigations with a specially adapted compressor, even lower temperatures are to be achieved, down to 40 K.

We are looking for industrial partners for adaptations for special application purposes or possible further developments. Conceivable are, for example, a compact system suitable for use in motor vehicles in a functional housing with the necessary interfaces or a further development of the current cooler to achieve higher cooling capacity, lower temperatures and higher efficiency.


Your Request

Further Projects

Image

Corrosion inhibitor for ammonia absorption systems

An alternative to chromium(VI) compounds

Image

Development of a Cryogenic Magnetic Air Separation Unit

Oxygen Enrichment by Applied Cryogenic Magnetohydrodynamics

Image

Software for test rigs

Individual software for complex tests and evaluation

Image

Brine (water)-water heat pump

Test according DIN EN 14511 and 14825

Image

High temperature heat pump

Using waste heat from industrial processes


Contact

Institut für Luft- und Kältetechnik - Gemeinnützige Gesellschaft mbH
Bertolt-Brecht-Allee 20, 01309 Dresden


Reception ILK Dresden

+49-351-4081-5000

+49-351-4081-5099

Image ISO 9001
Bild Zuse Mitglied Bild SIG