Current research projects

Image 3D - Air flow sensor
Image Solar Cooling
Image Influenced melting point of water by magnetic field
Image High temperature heat pump
Image High Capacity Pulse Tube Cooler
Image Swirl-free on the move...
Image Micro fluidic expansion valve
Image Filter Tests
Image Helium extraction from natural gas
Image Non- invasive flow measurements
Image Testzentrum PLWP at ILK Dresden
Image Thermal engines
Image Certification of efficient air conditioning and ventilation systems through the new "indoor air quality seal" for non-residential buildings
Image Low noise and non metallic liquid-helium cryostat
Image Refrigerants, lubricants and mixtures
Image In-situ investigation concerning the swelling behaviour of polymer materials under elevated pressures and temperatures

You are here:  Home /  Research and Development


IO-Scan - Integral measuring optical scanning method

INNO-KOM

02/2022 - 07/2024

M.Sc. Rebekka Grüttner

+49-351-4081-5314

IO-Scan

Development of a photometric measurement method for determining the air exchange rate in indoor areas

Motivation

  • Cost-effective, real-time assessment of indoor air quality in the form of air exchange rates
  • Verify and optimise the effectiveness of ventilation systems in occupied areas
  • Ability to evaluate aerosol reduction through the interaction of window ventilation, building ventilation system and mobile room air cleaners

Project Objective

  • Self-calibrating measuring system
  • Deviation from previous trace gas measurements should be within 10%.
  • Real-time results can detect and evaluate the influence of changes in the ventilation system during the measurement process
  • Intended measurement depth in the room: 1 m to 50 m

Solution Approach

  • The introduction of mist aerosols into the room air influences the light transmittance to be measured.
  • Transmittance of an air-aerosol mixture and use of measured transmittance to determine air exchange rate
  • Integral real-time optical measurement over individual indoor distances

[Translate to EN:] Ergebnisse / Aktueller Stand

[Translate to EN:]

[Translate to EN:]

[Translate to EN:]


Your Request

Further Projects - Research and Development

Image

Behavior of multiphase cryogenic fluids

experimental und numerical investigations

Image

Innovative Parahydrogen Generator Based on Magnets

Magnetic Gas Separation of the Hydrogen Isomers

Image

Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K

high performance efficiency, environmental friendliness, compactness, cost-effectiveness

Image

Intelligent innovative power supply for superconducting coils

Compact, powerful power supply with 4-quadrant converter

Image

Laseroptical measurement

PIV and LDA / PDA