Aktuelle Forschungsprojekte

Image Certification of efficient air conditioning and ventilation systems through the new "indoor air quality seal" for non-residential buildings
Image Filter Tests
Image Performance tests of refrigerant compressors
Image Computational fluid dynamics CFD
Image Preformance measurements of heat exchangers
Image Cryostats, Non-Metallic and Metallic
Image Test rigs for refrigeration and heat pump technology
Image Tribological investigations of oil-refrigerant-material-systems
Image Testzentrum PLWP at ILK Dresden
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Multifunctional electronic modules for cryogenic applications
Image Lifetime prediction of hermetic compressor systems
Image Optimizing HVAC operation with machine learning
Image Pulse-Tube-Refrigerator with sealed compressor
Image IN-SITU SWELLING BEHAVIOUR OF POLYMER MATERIALS IN FLAMMABLE FLUIDS
Image Helium extraction from natural gas

You are here:  Home /  Research and Development


Low noise and non metallic liquid-helium cryostat

Industry and Research Institutes

Dr. rer. nat. Andreas Kade

+49-351-4081-5117

Low-noise Magnetic Field Cryostat for SQUID-Applications

Technical Data for the Cryostats

parametervalue
volume of liquid helium5 to 12 litre (other volume possible)
time to complete evaporation of helium3 to 7 days (depends on size)
heat load0.1 W (in standby operation)
rate of helium evaporation≤ 3 litre / day
holding time of the liquid heliumup to 4 days without refilling
initial noise of the cryostat< 3 fT / Hz½
helium leak test (He-vessel)< 1 × 10-11 mbar l / s

ILK Dresden developed low noise magnetic field and non metallic helium cryostats made of GRP (glass reinforced plastics) with a high helium and vacuum holding time.

The cryostats can operate in a direction independent operation mode (tiltable arrangement) and hence they are suitable for a plurality of several applications.

The ILK concept offers much lower permeation rates inside the He-reservoir as comparable models from other manufacturers and is therefore perfect for SQUID (superconducting quantum interference device) applications and other long-term measurements.
 
The technical design of the cryostats is thus predestined for future sensor generation.

Specification

  • suitable for the cooling of SQUID-Sensors
  • non-metallic (GRP)
  • fast filling with LHe via thermosiphon
  • GRP exhaust gas cooled radiation shield for high efficiency.
  • small cold-warm distance feasible
  • low maintenance 
  • other design variants possible on costumer request

Low noise magnetic field

The low-noise magnetic field of the cryostat was tested in the magnetically shielded room BMSR-1 of PTB Berlin and is smaller than the lowest resolution limit of the measurement system used, see figure below.


Your Request

Further Projects - Research and Development

Image

Cool Up

Upscaling Sustainable Cooling

Image

Ionocaloric cooling

Ionocaloric solid-liquid phase cooling process

Image

Low temperature – test facilities

thermal cycling tests at very low temperatures