Current research projects

Image Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K
Image Electrochemical decontamination of electrically conducting surfaces „EDeKo II“
Image Investigation of material-dependent parameters
Image Helium extraction from natural gas
Image Innovative Parahydrogen Generator Based on Magnets
Image ZeroHeatPump
Image Mass Spectrometer
Image Testing of mobile leak detectors according to DIN EN 14624
Image Lifetime prediction of hermetic compressor systems
Image Influenced melting point of water by magnetic field
Image Non- invasive flow measurements
Image Filter Tests
Image Cold meter
Image Ionocaloric cooling
Image Low Temperature Tribology
Image Practical training, diploma, master, bachelor

You are here:  Home /  Research and Development


Optimizing HVAC operation with machine learning

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in progress

Intelligent control of HVAC systems – high comfort with low energy demand

Motivation

During operation, the energy efficiency of many HVAC systems remains considerably below the value predicted when planning. One reason is that especially complex systems with multiple generators, storages and consumer locations frequently are not operated optimally.

Aim of the project

Development of a tool for optimizing the operation of HVAC systems which uses machine learning (ML) methods and data from the digital building model (Building Information Model, BIM):

  • Optimization goal: high energy efficiency with at the same time high comfort for users

  • Saving operating costs, energy and carbon dioxide emissions due to increased efficiency

  • Continuous autonomous improvement of the ML algorithm by learning from new measured data with auto-adaptive reaction to changing conditions (building, system, use, smart meter for real time billing of energy and media, etc.)

Approach

  • Reproduction of the real system’s thermal-energetic behaviour in the machine learning system, training with BIM data, measured data and a digital twin of the real system
  • Application of ML methods for load forecasting (weather, usage patterns)

  • Automatic classification of utilisation scenarios, fault detection

  • Integration of available tools for efficient simulation of indoor air flows and for calculating energy demands

  • Co-Validation of optimization tool, experimental studies and digital twin

Interested?

Please get in touch with us if you are interested in a cooperation: klima@ilkdresden.de

 


Your Request

Further Projects - Research and Development

Image

ZeroHeatPump

Performance management of small heat pumps without energy consumption

Image

Investigation of material-dependent parameters

Investigation of the permeation behavior