Current research projects

Image Preformance measurements of heat exchangers
Image Software for test rigs
Image Lifetime prediction of hermetic compressor systems
Image Mass Spectrometer
Image Helium extraction from natural gas
Image Innovative small helium liquefier
Image Tribological investigations of oil-refrigerant-material-systems
Image Low Temperature Measuring Service
Image High Capacity Pulse Tube Cooler
Image Cryostats, Non-Metallic and Metallic
Image Behavior of multiphase cryogenic fluids
Image Solar Cooling
Image Non- invasive flow measurements
Image Micro heat exchangers in refrigeration
Image 3D - Air flow sensor
Image Certifiable connection types in cryogenics

You are here:  Home /  Research and Development


Optimizing HVAC operation with machine learning

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in progress

Intelligent control of HVAC systems – high comfort with low energy demand

Motivation

During operation, the energy efficiency of many HVAC systems remains considerably below the value predicted when planning. One reason is that especially complex systems with multiple generators, storages and consumer locations frequently are not operated optimally.

Aim of the project

Development of a tool for optimizing the operation of HVAC systems which uses machine learning (ML) methods and data from the digital building model (Building Information Model, BIM):

  • Optimization goal: high energy efficiency with at the same time high comfort for users

  • Saving operating costs, energy and carbon dioxide emissions due to increased efficiency

  • Continuous autonomous improvement of the ML algorithm by learning from new measured data with auto-adaptive reaction to changing conditions (building, system, use, smart meter for real time billing of energy and media, etc.)

Approach

  • Reproduction of the real system’s thermal-energetic behaviour in the machine learning system, training with BIM data, measured data and a digital twin of the real system
  • Application of ML methods for load forecasting (weather, usage patterns)

  • Automatic classification of utilisation scenarios, fault detection

  • Integration of available tools for efficient simulation of indoor air flows and for calculating energy demands

  • Co-Validation of optimization tool, experimental studies and digital twin

Interested?

Please get in touch with us if you are interested in a cooperation: klima@ilkdresden.de

 


Your Request

Further Projects - Research and Development

Image

Electrical components in refrigeration circuits

High voltage tests under real conditions

Image

Influenced melting point of water by magnetic field

Controlled sub-cooling of products in freezing processes

Image

Non- invasive flow measurements

PDPA - flow fields and particle sizes

Image

Computational fluid dynamics CFD

Scientific analysis of flows