Image Thermal engines
Image Measurement of insulated packaging
Image Certifiable connection types in cryogenics
Image Performance tests of condensing units
Image Influenced melting point of water by magnetic field
Image Reducing the filling quantity
Image Test rigs for refrigeration and heat pump technology
Image Swirl-free on the move...
Image Lifetime prediction of hermetic compressor systems
Image Cold meter
Image Electrical components in refrigeration circuits
Image Filter Tests
Image Performance tests of refrigerant compressors
Image Combined building and system simulation
Image Preformance measurements of heat exchangers
Image Heat2Power

You are here:  Home /  Research and Development


Pulse-Tube-Refrigerator with sealed compressor

Federal Ministry of Economics and Energy

Dipl.-Ing. Gunar Schroeder

+49-351-4081-628

for mobil use in the hydrogen technology

Within the research project "Mobile single-stage pulse tube cooler with hermetic compressor drive" (project number MF 130012), a compact, robust and low-maintenance cryocooler was developed.
Possible applications for this cryocooler, e.g.,

  • Cooling of mobile high-pressure tanks for storing fuels in cryogenic liquid or supercritical state (e. g. H2 – cryogenic under high pressure)
  • mobile cooling applications < –40°C in medical technology, transport of organic material or samples

The system has a simple and cost-effective design with the following advantages:

  • Mobile use, supply voltage 12 V or 24 V, air-cooled
  • Supply of cryogenic temperatures in the range 60...120 K
  • Low maintenance and long-life, no moving parts in the cold part
  • Programmable temperature curves via microcontroller-based control
  • Low power consumption, in the range of 500 W
  • Low space requirement, arrangement can be adapted
  • Lower costs control through extensive use of commercial components

Figure 1 shows the experimental setup of the cryocooler in a specially adapted orifice double inlet configuration. With the use of a special valve control, 2 W cooling capacity at 77 K and 5 W at 90 K could be achieved. The lowest temperature reached with this single-stage configuration was 68 K. The temperature stability of the system was validated in a test lasting 100 h, see figure 2. In further investigations with a specially adapted compressor, even lower temperatures are to be achieved, down to 40 K.

We are looking for industrial partners for adaptations for special application purposes or possible further developments. Conceivable are, for example, a compact system suitable for use in motor vehicles in a functional housing with the necessary interfaces or a further development of the current cooler to achieve higher cooling capacity, lower temperatures and higher efficiency.


Your Request

Further Projects - Research and Development

Image

Brine (water)-water heat pump

Test according DIN EN 14511 and 14825

Image

Air-water heat pumps

Test according DIN EN 14511 and 14825

Image

High temperature heat pump

Using waste heat from industrial processes

Image

Micro heat exchangers in refrigeration

3D-printing of micro heat exchangers

Image

Electrochemical decontamination of electrically conducting surfaces „EDeKo II“

Improvement of sanitary prevention by electrochemical decontamination


Contact

Institut für Luft- und Kältetechnik - Gemeinnützige Gesellschaft mbH
Bertolt-Brecht-Allee 20, 01309 Dresden


Secretary to the Management

+49-351-4081-520

+49-351-4081-525

Image ISO 9001
Bild Zuse Mitglied Bild SIG