Aktuelle Forschungsprojekte

Image Entwicklung Prüfverfahren und Prüfstand für stationäre Einbau-Kältesätze
Image Heat2Power
Image Innovatives Tieftemperaturkühlsystem zur Rekondensation / Verflüssigung von technischen Gasen bis 77 K
Image Wärmeübergang in Ferro-Nanofluiden unter Magnetfeldeinfluss
Image Korrosionsinhibitor für Ammoniak-Absorptions-Anlagen
Image Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen
Image Tribologische Untersuchungen im System Öl-Kältemittel-Werkstoff
Image Numerische und Experimentelle Untersuchung zum Gefährdungspotential durch SARS-CoV-2 in klimatisierten Räumen
Image Reduktion der Schallemission von Darrieus-Windturbinen
Image Lebensdauerprognose von Hermetikverdichtersystemen
Image ZeroHeatPump
Image Prüfstand für Ventilatoren nach DIN EN ISO 5801
Image Schalldämpfer mit integrierten Abgaswärmeübertrager
Image In-Situ-Quellverhalten von Polymeren in brennbaren Fluiden
Image Hochtemperatur Wärmepumpe
Image Massenspektrometer

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Innovativer magnetbasierter Parawasserstoffkonverter

Euronorm GmbH

Dr. rer. nat. Erik Neuber

+49-351-4081-5122

Magnetische Gasseparation der Wasserstoffisomere

Molekularer Wasserstoff existiert in Form zweier verschiedener Isomere, welche sich durch die Konfiguration des Kernspins unterscheiden: Ortho- und Parawasserstoff, wobei letzterer bei Raumtemperatur nur 25% des Gesamtgases ausmacht. Zugleich wird Parawasserstoff in konzentrierter Form insbesondere in der Medizin und Chemie zur weitverbreiteten Methode der Hyperpolarisation (sog. PHIP – Parawasserstoff-induzierte Polarisation) genutzt, welche in MRT- bzw. NMR-Anlagen zur Kontraststeigerung zum Einsatz kommt.
Die Standardverfahren zur Herstellung dieses Spin-Isomers basieren jedoch allesamt auf kryogenen Methoden, welche einen verhältnismäßig hohen Energie- und Wartungsaufwand besitzen. Von daher besteht der Bedarf nach einer kostengünstigen und effizienten Möglichkeit zur Anreicherung von Parawasserstoff bei Raumtemperatur, so dass dieser im Anschluss direkt weiter verwendet werden kann.

Projektziele

  • Entwicklung eines innovativen Ortho-Para-Konverters, welcher bei Raumtemperatur nach dem Prinzip der magnetischen Gasseparation arbeitet;
  • Vermessung der Separationsfähigkeit des ausgewählten Prinzips bei Raumtemperatur und Optimierung des resultierenden Effektes sowie
  • Anreicherung auf 99% Parawasserstoff bei variablem Volumenstrom (mindestens 4 Standard-Liter pro Minute).

Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

Untersuchung von materialabhängigen Parametern

Untersuchung der Permeationsverhalten

Image

Cool Up

Upscaling Sustainable Cooling

Image

Beladungssensor für Adsorptionsfilter

Sensorsystem zur Durchbruchserkennung bei der Gasabscheidung

Image

Ionokalorische Kälteerzeugung

Ionokalorisches Fest-Flüssigphasen-Kühlverfahren