Aktuelle Forschungsprojekte

Image Untersuchungen nach DIN EN ISO 14903
Image KLAR
Image Kryostate aus GFK oder Metall
Image Innovativer magnetbasierter Parawasserstoffkonverter
Image Luft-Wasser Wärmepumpen
Image Entwicklung von Handlungsempfehlungen für praxisgerechte Lüftungskonzepte und Entwicklung eines CO2-Berechnungstools
Image Kryoflüssigkeitspumpen für tiefkalt verflüssigte Gase wie z.B. LIN, LOX, LHe, LH2, LNG, LAr
Image CO2-Trockeneis-Sublimation zur Tieftemperaturkühlung
Image Wasser-Luft-Kühler-Kit für Helium Kompressoren in der Kryotechnik
Image RauMLuft.ROM | ROM - basierte Vorhersage von Raumluftströmungen mit maschinellem Lernen
Image Dynamische Gebäude- und Anlagensimulation mit TRNSYS
Image Phasenauflösende numerische Simulation von Suspensionen
Image Verbundvorhaben Öl-Effiziente Kältesysteme – Schmierstoffwahl für Kälteanlagen unter dem Gesichtspunkt der Energieeffizienz
Image Elektronische Multifunktionsmodule für kryogene Anwendungen
Image Elektrische Auskopplung aus einer Expansionsturbine
Image Energieeffizienzberatung Kraft-Wärme-Kälte

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Innovativer magnetbasierter Parawasserstoffkonverter

Euronorm GmbH

Dr. rer. nat. Erik Neuber

+49-351-4081-5122

Magnetische Gasseparation der Wasserstoffisomere

Molekularer Wasserstoff existiert in Form zweier verschiedener Isomere, welche sich durch die Konfiguration des Kernspins unterscheiden: Ortho- und Parawasserstoff, wobei letzterer bei Raumtemperatur nur 25% des Gesamtgases ausmacht. Zugleich wird Parawasserstoff in konzentrierter Form insbesondere in der Medizin und Chemie zur weitverbreiteten Methode der Hyperpolarisation (sog. PHIP – Parawasserstoff-induzierte Polarisation) genutzt, welche in MRT- bzw. NMR-Anlagen zur Kontraststeigerung zum Einsatz kommt.
Die Standardverfahren zur Herstellung dieses Spin-Isomers basieren jedoch allesamt auf kryogenen Methoden, welche einen verhältnismäßig hohen Energie- und Wartungsaufwand besitzen. Von daher besteht der Bedarf nach einer kostengünstigen und effizienten Möglichkeit zur Anreicherung von Parawasserstoff bei Raumtemperatur, so dass dieser im Anschluss direkt weiter verwendet werden kann.

Projektziele

  • Entwicklung eines innovativen Ortho-Para-Konverters, welcher bei Raumtemperatur nach dem Prinzip der magnetischen Gasseparation arbeitet;
  • Vermessung der Separationsfähigkeit des ausgewählten Prinzips bei Raumtemperatur und Optimierung des resultierenden Effektes sowie
  • Anreicherung auf 99% Parawasserstoff bei variablem Volumenstrom (mindestens 4 Standard-Liter pro Minute).

Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

ZeroHeatPump

Leistungsführung von Klein-Wärmepumpen ohne Energieverbrauch

Image

KLAR

Klassenraumlüftung akustikbasiert regeln