Aktuelle Forschungsprojekte

Image Entwicklung eines kryogenen magnetbasierten Luftzerlegers
Image CO2-Trockeneis-Sublimation zur Tieftemperaturkühlung
Image Mollier hx-Diagramm
Image Numerische und Experimentelle Untersuchung zum Gefährdungspotential durch SARS-CoV-2 in klimatisierten Räumen
Image Prüfstände für Kälte- und Wärmepumpentechnik
Image Modulares Speichersystem für solare Kühlung
Image Innovatives Tieftemperaturkühlsystem zur Rekondensation / Verflüssigung von technischen Gasen bis 77 K
Image Energieeffizienzbewertung und optimierte Betriebsführung von gewerblichen Kälteanlagen
Image Phasenauflösende numerische Simulation von Suspensionen
Image Heat2Power
Image Software für Prüfstände
Image Prüfverfahren für Außenluftfilter
Image Leistungsangebot der Lecksuche und Dichtheitsprüfung
Image Pulse-Tube Kryokühler
Image Prüfbad-Haube
Image Industrie-4.0-Membran-Wärme-und-Stoffübertrager (i-MWÜ4.0)

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Innovativer magnetbasierter Parawasserstoffkonverter

Euronorm GmbH

Dr. rer. nat. Erik Neuber

+49-351-4081-5122

Magnetische Gasseparation der Wasserstoffisomere

Molekularer Wasserstoff existiert in Form zweier verschiedener Isomere, welche sich durch die Konfiguration des Kernspins unterscheiden: Ortho- und Parawasserstoff, wobei letzterer bei Raumtemperatur nur 25% des Gesamtgases ausmacht. Zugleich wird Parawasserstoff in konzentrierter Form insbesondere in der Medizin und Chemie zur weitverbreiteten Methode der Hyperpolarisation (sog. PHIP – Parawasserstoff-induzierte Polarisation) genutzt, welche in MRT- bzw. NMR-Anlagen zur Kontraststeigerung zum Einsatz kommt.
Die Standardverfahren zur Herstellung dieses Spin-Isomers basieren jedoch allesamt auf kryogenen Methoden, welche einen verhältnismäßig hohen Energie- und Wartungsaufwand besitzen. Von daher besteht der Bedarf nach einer kostengünstigen und effizienten Möglichkeit zur Anreicherung von Parawasserstoff bei Raumtemperatur, so dass dieser im Anschluss direkt weiter verwendet werden kann.

Projektziele

  • Entwicklung eines innovativen Ortho-Para-Konverters, welcher bei Raumtemperatur nach dem Prinzip der magnetischen Gasseparation arbeitet;
  • Vermessung der Separationsfähigkeit des ausgewählten Prinzips bei Raumtemperatur und Optimierung des resultierenden Effektes sowie
  • Anreicherung auf 99% Parawasserstoff bei variablem Volumenstrom (mindestens 4 Standard-Liter pro Minute).

Ihre Anfrage zum Projekt