Aktuelle Forschungsprojekte

Image Filterprüfungen
Image Thermostatische Expansionsventile
Image Nichtinvasive Strömungsmessung
Image Reduktion der Schallemission von Darrieus-Windturbinen
Image Lüftungsgerät mit akustischer Regelungsoption
Image Befeuchtungsanlage für hochreine Gase
Image Entwicklung eines schnellen Rechenverfahrens..
Image Nachweis der Lagerbeständigkeit von Kryoröhrchen
Image Testzentrum PLWP am ILK
Image Software für die TGA-Planung
Image Untersuchungen an Deckenkühlgeräten
Image Prüfung mobiler Leckdetektoren nach DIN EN 14624
Image Elektrische Komponenten in Kältekreisläufen
Image Kalibrierung von Tieftemperatursensoren
Image Prüfstände für Kälte- und Wärmepumpentechnik
Image In-Situ-Untersuchungen zum Quellverhalten von Polymerwerkstoffen unter erhöhten Drücken und Temperaturen

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

Tieftemperaturtribologie

Tribologische Untersuchungen bei kryogenen Temperaturen

Image

Cl.Ai.Co - Clever Air Components

Entwicklung eines innovativen Systems für eine energieeffiziente Gebäudeklimatisierung

Image

For(W)ing - Laufradflügel für Strömungsmaschinen

Flexible, adaptierbare Bauteile auf Basis funktionalisierter Textilien

Image

Innovativer Helium-Kleinverflüssiger

Verflüssigungsraten von 10 bis 15 l/h