Aktuelle Forschungsprojekte

Image Initiierung eines Lithiumkreislaufes – Recycling von Lithiumbromidlösungen aus Absorptionskälteanlagen (ReLiA)
Image Korrosionsinhibitor für Ammoniak-Absorptions-Anlagen
Image Reduktion der Schallemission von Darrieus-Windturbinen
Image Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen
Image Untersuchungen nach DIN EN ISO 14903
Image Rauscharme, nichtmetallische Flüssig-Heliumkryostate
Image Prüfstandsbau zur Festigkeitsprüfung und Dichtheitsprüfung
Image Zertifizierbare Verbindungsarten in der Kryotechnik
Image Korrosionsinhibitor für Absorptionskälteanlagen
Image Abluftbehandlungsmethode zur Abscheidung von Spurenstoffen in neuen Produktionsverfahren
Image Entwicklung hydrolysebeständiger Hotmelt-Klebeverbunde für Prozessluft- und Klimaanwendungen unter Einhaltung hygienischer Anforderungen
Image In-Situ-Quellverhalten von Polymeren in brennbaren Fluiden
Image Platz-integrierte Sekundärluft-Aufbereitung
Image Wetterschutzhaube mit integrierter nachhaltiger Kühlfunktion | NaKu-WSH
Image Prüfstände zur Messung der Luftleistung
Image Industrie-4.0-Membran-Wärme-und-Stoffübertrager (i-MWÜ4.0)

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

Vakuum-Flüssigeis-Technologie

Flüssigeiserzeugung durch Direktverdampfung

Image

Prüfbad-Haube

Optimiertes Haubenprüfverfahren

Image

Selbstoptimierendes Raumluftmanagementsystem

Echtzeitsimulation von Raumströmungen

Image

Entwicklung eines schnellen Rechenverfahrens..

..für die Auslegung von Turbomaschinen basierend auf IBM

Image

Schalldämpfer mit integrierten Abgaswärmeübertrager

zur Verbesserung des Kaltstartverhaltens