Aktuelle Forschungsprojekte

Image Entwicklung eines kryogenen magnetbasierten Luftzerlegers
Image Charakterisierung von Supraleitern in Wasserstoffatmosphäre
Image Panel mit indirekter Verdunstungskühlung über Membran
Image Photometrisches Messverfahren zur Bestimmung der Luftwechselrate in Innenräumen - IO-Scan
Image MetPCM
Image Leistungsangebot der Lecksuche und Dichtheitsprüfung
Image Sole (Wasser)-Wärmepumpen
Image Solare Kühlung
Image Prüfverfahren für elektrische Komponenten
Image Pulse-Tube Kryokühler
Image Wasserstoff- und Methan-Versuchsfeld am ILK
Image Textiler Wärme- und Stoffübertrager in KVS-Systemen
Image ZeroHeatPump
Image Strömungssimulation CFD
Image Dynamische Gebäude- und Anlagensimulation mit TRNSYS
Image Selbstoptimierendes Raumluftmanagementsystem

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

Dynamische Gebäude- und Anlagensimulation mit TRNSYS

Wissenschaftliche Analyse thermodynamischer Prozesse in Gebäuden und Anlagen

Image

Elektronische Multifunktionsmodule für kryogene Anwendungen

Elektronik mit geringem Verkabelungsaufwand - mehr als 100 Sensoren über eine Durchführung

Image

Verhalten mehrphasiger kryogener Fluide

Experimentelle und Numerische Untersuchungen