Aktuelle Forschungsprojekte

Image Rauscharme, nichtmetallische Flüssig-Heliumkryostate
Image Leistungsprüfung an Verflüssigungssätzen
Image Heliumgewinnung aus Erdgas
Image Wasserstoff- und Methan-Versuchsfeld am ILK
Image Elektrische Komponenten in Kältekreisläufen
Image Thermostatische Expansionsventile
Image Panel mit indirekter Verdunstungskühlung über Membran
Image Stoffdatenmodule
Image Solare Kühlung
Image Entwicklung von Handlungsempfehlungen für praxisgerechte Lüftungskonzepte und Entwicklung eines CO2-Berechnungstools
Image Zertifizierbare Verbindungsarten in der Kryotechnik
Image Zertifizierung von effizienten Klima- und Lüftungsanlagen durch das neue „Qualitätssiegel Raumlufttechnik“ für Nichtwohngebäude
Image Seminar Lecksuche / Dichtheitsprüfung in der Kältetechnik
Image Massenspektrometer
Image Energieeffizienzbewertung und optimierte Betriebsführung von gewerblichen Kälteanlagen
Image Phasenauflösende numerische Simulation von Suspensionen

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

Thermische Speicherung mit PCM

Von der Speicheraufgabe zur Anwendung

Image

Rauscharme, nichtmetallische Flüssig-Heliumkryostate

Magnetisch rauscharm für z.B. SQUID-Anwendungen

Image

Kryostate aus GFK oder Metall

Lageunabhängig, nicht-metallisch, hohe Standzeit für flüssig Stickstoff und flüssig Helium

Image

Strömungssimulation CFD

Wissenschaftliche Untersuchung von Strömungen

Image

Textiler Wärme- und Stoffübertrager in KVS-Systemen

Enthalpierückgewinnung zwischen örtlich getrennten Luftströmen