Aktuelle Forschungsprojekte

Image Verbundvorhaben Öl-Effiziente Kältesysteme – Schmierstoffwahl für Kälteanlagen unter dem Gesichtspunkt der Energieeffizienz
Image Befeuchtungsanlage für hochreine Gase
Image Entwicklung Prüfverfahren und Prüfstand für stationäre Einbau-Kältesätze
Image Kryoflüssigkeitspumpen für tiefkalt verflüssigte Gase wie z.B. LIN, LOX, LHe, LH2, LNG, LAr
Image In-Situ-Untersuchungen zum Quellverhalten von Polymerwerkstoffen unter erhöhten Drücken und Temperaturen
Image Korrosionsinhibitor für Ammoniak-Absorptions-Anlagen
Image Praktikum, Diplom, Master, Bachelor
Image Kalibrierleck für die Wasserbad Dichtheitsprüfung
Image Lebensdauerprognose von Hermetikverdichtersystemen
Image Massenspektrometer
Image Ultradichte Kryoröhrchen als neuartige Primärpackmittel - Ultrakryo
Image Entwicklung eines kryogenen magnetbasierten Luftzerlegers
Image Tieftemperaturtribologie
Image Elektrochemische Dekontamination leitfähiger Oberflächen „EDeKo II“
Image ML-basierte Module für intelligente TGA-Planungssoftware
Image Elektronische Multifunktionsmodule für kryogene Anwendungen

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Rauscharme, nichtmetallische Flüssig-Heliumkryostate

Industrie und Forschungsinstitute

Dr. rer. nat. Andreas Kade

+49-351-4081-5117

Magnetisch rauscharm für z.B. SQUID-Anwendungen

Daten für den Kryostaten

ParameterWert
Volumen für flüssiges Helium5 bis 12 Liter (andere Volumina möglich)
Zeit für vollständige Verdampfung3 bis 7 Tage (abhängig von Baugröße)
Wärmeeintrag0,1 W im Standbybetrieb
Verdampfungsrate Helium≤ 3 Liter / Tag
Standzeit des kryogenen Mediumsbis zu 4 Tage ohne Nachfüllung
Magnetisches Rauschen< 3 fT / Hz½
Helium Lecktest (He-Behälter)< 1 × 10-11 mbar l / s

Am ILK Dresden sind magnetisch sehr rauscharme, nichtmetallische Helium-Kryostate aus GFK (glasfaserverstärkter Kunststoff) entwickelt wurden, die eine hohe Helium(He)- und Vakuumstandzeit besitzen. Damit diese Kryostaten in räumlich beliebig orientierten Anordnungen / Konstruktionen zum Einsatz kommen können, wurde ein spezielles Design für die Lageunabhängigkeit entwickelt. Das hierbei erworbene wissenschaftliche Know-how ist für eine Vielzahl von weiteren Anwendungen einsetzbar.

Das ILK-Konzept hat deutlich geringere Permeationsraten innerhalb des He-Reservoirs als vergleichbare Modelle anderer Hersteller wodurch sich höhere Standzeiten des Kryostaten für beispielsweise magnetische SQUID (superconducting quantum interference device) und andere Langzeitexperimente ergeben.
 
Die technische Auslegung der Kryostate ist aus diesem Blickwinkel auch für zukünftige Sensorgenerationen optimal ausgerüstet.

Spezifikation

  • Geeignet für SQUID-Sensor Kühlung
  • Nicht metallisch (GFK)
  • Schnelle Befüllung über Thermo-Siphon mit LHe möglich
  • GFK und abgasgekühlter Verdampfungsschild ermöglichen eine hohe Effizienz
  • Geringer Kalt-Warm Abstand möglich
  • Wartungsarm
  • Je nach Kunderwunsch sind andere Designvarianten möglich

Magnetische Rauscharmut

Die magnetische Rauscharmut des Kryostaten wurde an der PTB (Physikalisch-Technische Bundesanstalt) in Berlin in der magnetisch höchstgeschirmten Kabine BMSR-1 gemessen und  ist kleiner als die untere Auflösungsgrenze des verwendeten Messsystems, siehe folgende Abbildung.


Ihre Anfrage zum Projekt