Aktuelle Forschungsprojekte

Image Untersuchung von Kühlsolen
Image Entwicklung und Erprobung des Einsatzes von Phasenwechselmaterialien an WEMS (Window Energy Management Systems)
Image Mikrofluidisches Expansionsventil
Image Numerische und Experimentelle Untersuchung zum Gefährdungspotential durch SARS-CoV-2 in klimatisierten Räumen
Image Luft-Wasser Wärmepumpen
Image Kalibrierleck für die Wasserbad Dichtheitsprüfung
Image Leistungsangebot Laboranalysen
Image Kalibrierung von Tieftemperatursensoren
Image Wärmeübergang in turbulenten Ferro-Nanofluiden unter dem Einfluss von Magnetfeldern
Image Untersuchungen nach DIN EN ISO 14903
Image Thermische Speicherung mit PCM
Image Tribologische Untersuchungen im System Öl-Kältemittel-Werkstoff
Image Wasserstoff- und Methan-Versuchsfeld am ILK
Image Hybrid- Fluid für CO2-Sublimations-Kältekreislauf
Image Schalldämpfer mit integrierten Abgaswärmeübertrager
Image ML-basierte Module für intelligente TGA-Planungssoftware

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Wasserstoff- und Methan-Versuchsfeld am ILK

BMWi

Dr. rer. nat. Andreas Kade

+49-351-4081-5117

Gleichzeitig Drücke bis 1000 bar, Temperaturen bis –253°C

Am ILK Dresden wird ein innovatives Versuchsfeld für kryogene Hochdruckanwendungen mit Wasserstoff (H2), Methan (CH4) und Methan-Wasserstoff-Gemischen betrieben. Dieses ermöglicht die Durchführung verschiedener Dienstleistungen, unter anderem:

  • Bauteiltests und ‑qualifizierungen bei Temperaturen von 20 K (−253 °C) bis Raumtemperatur und gleichzeitig Drücken von Hochvakuum bis 1000 bar (bspw. Dichtungstests und Permeationstests).
  • Untersuchung von Be- und Entladevorgängen an kryogenen oder bei Raumtemperatur betriebenen Wasserstoff- und Methanspeichern (bspw. Adsorberspeicher und kryokomprimierter Wasserstoff).
  • Untersuchung von Katalysatoren für die Ortho-Para-Umwandlung von Wasserstoff.
  • Langzeitauslagerung von Bauteilen und Komponenten in Wasserstoff- oder Methanatmosphäre bei bis zu +200 °C und 160 bar zur Untersuchung von Degradationseffekten (bspw. Wasserstoffversprödung).
  • Neu- und Weiterentwicklung von verschiedenen Wasserstoff- und Methan-Komponenten (bspw. Rückkühlsysteme, Latentwärmespeicher, kryogene Druckspeicher, Wärmeübertrager und kryogene Pumpen).
  • Realisierung von Gesamtsystemen für Wasserstoff und Methan.

Das folgende Diagramm zeigt die Wasserstoff-Speicherdichte in Abhängigkeit von Druck und Temperatur:


Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung