Aktuelle Forschungsprojekte

Image Wasser-Luft-Kühler-Kit für Helium Kompressoren in der Kryotechnik
Image Textiler Wärme- und Stoffübertrager in KVS-Systemen
Image Primäre Lärmreduktion an Ventilatoren
Image Initiierung eines Lithiumkreislaufes – Recycling von Lithiumbromidlösungen aus Absorptionskälteanlagen (ReLiA)
Image Gesamtsystemoptimierung von Kältetechnischen Alagensystemen für Energiewende und Klimaschutz
Image Kältemengenzähler
Image Bewertungsverfahren für Systeme mit Sekundärluft und Raumwirkung
Image Prüfverfahren für Außenluftfilter
Image Hybrid- Fluid für CO2-Sublimations-Kältekreislauf
Image Innovatives Tieftemperaturkühlsystem zur Rekondensation / Verflüssigung von technischen Gasen bis 77 K
Image Thermosyphon mit in situ beschichtetem Verdampfer
Image Leistungsangebot Laboranalysen
Image Nachweis der Lagerbeständigkeit von Kryoröhrchen
Image Dynamische Gebäude- und Anlagensimulation mit TRNSYS
Image Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen
Image MetPCM

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Wasserstoff- und Methan-Versuchsfeld am ILK

BMWi

Dr. rer. nat. Andreas Kade

+49-351-4081-5117

Gleichzeitig Drücke bis 1000 bar, Temperaturen bis –253°C

Am ILK Dresden wird ein innovatives Versuchsfeld für kryogene Hochdruckanwendungen mit Wasserstoff (H2), Methan (CH4) und Methan-Wasserstoff-Gemischen betrieben. Dieses ermöglicht die Durchführung verschiedener Dienstleistungen, unter anderem:

  • Bauteiltests und ‑qualifizierungen bei Temperaturen von 20 K (−253 °C) bis Raumtemperatur und gleichzeitig Drücken von Hochvakuum bis 1000 bar (bspw. Dichtungstests und Permeationstests).
  • Untersuchung von Be- und Entladevorgängen an kryogenen oder bei Raumtemperatur betriebenen Wasserstoff- und Methanspeichern (bspw. Adsorberspeicher und kryokomprimierter Wasserstoff).
  • Untersuchung von Katalysatoren für die Ortho-Para-Umwandlung von Wasserstoff.
  • Langzeitauslagerung von Bauteilen und Komponenten in Wasserstoff- oder Methanatmosphäre bei bis zu +200 °C und 160 bar zur Untersuchung von Degradationseffekten (bspw. Wasserstoffversprödung).
  • Neu- und Weiterentwicklung von verschiedenen Wasserstoff- und Methan-Komponenten (bspw. Rückkühlsysteme, Latentwärmespeicher, kryogene Druckspeicher, Wärmeübertrager und kryogene Pumpen).
  • Realisierung von Gesamtsystemen für Wasserstoff und Methan.

Das folgende Diagramm zeigt die Wasserstoff-Speicherdichte in Abhängigkeit von Druck und Temperatur:


Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

ZeroHeatPump

Leistungsführung von Klein-Wärmepumpen ohne Energieverbrauch

Image

KLAR

Klassenraumlüftung akustikbasiert regeln