Aktuelle Forschungsprojekte

Image Akustik und Schwingungen
Image Filterprüfungen
Image Abluftbehandlungsmethode zur Abscheidung von Spurenstoffen in neuen Produktionsverfahren
Image Modulares Speichersystem für solare Kühlung
Image Apparatur und Verfahren zur Degradationsprüfung
Image Laseroptische Strömungsmessung
Image Vakuum-Flüssigeis-Technologie
Image Mikrowärmeübertrager in der Kältetechnik
Image Lebensdauerprognose von Hermetikverdichtersystemen
Image Mollier hx-Diagramm
Image Tieftemperaturtribologie
Image Entwicklung und Erprobung des Einsatzes von Phasenwechselmaterialien an WEMS (Window Energy Management Systems)
Image Prüfverfahren für elektrische Komponenten
Image Nachweis der Lagerbeständigkeit von Kryoröhrchen
Image Zertifizierbare Verbindungsarten in der Kryotechnik
Image Seminar Evakuieren und Trocknen von Kälteanlagen

Sie befinden sich hier:  Startseite /  Softwareentwicklung


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte - Softwareentwicklung

Image

Photometrisches Messverfahren zur Bestimmung der Luftwechselrate in Innenräumen - IO-Scan

Projektpartner aus der Industrie gesucht für die Überführung der Entwicklungsergebnisse in ein marktfähiges Messsystem zur Bestimmung der Luftwechselrate in Innenräumen

Image

Mollier hx-Diagramm

Prozessdarstellung im hx-Diagramm