Aktuelle Forschungsprojekte

Image All-In-One Gerät für Gefriertrocknung und Biomaterialherstellung
Image Thermische Speicherung mit PCM
Image Apparatur und Verfahren zur Degradationsprüfung
Image Entwicklung Prüfverfahren und Prüfstand für stationäre Einbau-Kältesätze
Image Solare Kühlung
Image Lüftungsgerät mit akustischer Regelungsoption
Image Druckfestigkeitsprüfung von CO2 Anlagen
Image Panel mit indirekter Verdunstungskühlung über Membran
Image Sole (Wasser)-Wärmepumpen
Image Wärmeübergang in Ferro-Nanofluiden unter Magnetfeldeinfluss
Image Hochtemperatur - Korrosionsinhibitoren zur Sicherung der Erweiterung des Anwendungsbereiches Abwärme nutzender Kälteerzeugung
Image Laseroptische Strömungsmessung
Image Cool Up
Image Pulse-Tube Kryokühler
Image Verbundvorhaben Öl-Effiziente Kältesysteme – Schmierstoffwahl für Kälteanlagen unter dem Gesichtspunkt der Energieeffizienz
Image Wärmeübergang in turbulenten Ferro-Nanofluiden unter dem Einfluss von Magnetfeldern

Sie befinden sich hier:  Startseite /  Softwareentwicklung


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte - Softwareentwicklung

Image

Photometrisches Messverfahren zur Bestimmung der Luftwechselrate in Innenräumen - IO-Scan

Projektpartner aus der Industrie gesucht für die Überführung der Entwicklungsergebnisse in ein marktfähiges Messsystem zur Bestimmung der Luftwechselrate in Innenräumen

Image

Mollier hx-Diagramm

Prozessdarstellung im hx-Diagramm