Aktuelle Forschungsprojekte

Image CFE-Test Dunstabzugshauben
Image Heat2Power
Image Thermische Kälteerzeugung / Absorptionskältetechnik
Image Wasserstoff- und Methan-Versuchsfeld am ILK
Image Gesamtsystemoptimierung von Kältetechnischen Alagensystemen für Energiewende und Klimaschutz
Image Beladungssensor für Adsorptionsfilter
Image Tieftemperaturtribologie
Image Entwicklung eines kryogenen magnetbasierten Luftzerlegers
Image Leistungsangebot Laboranalysen
Image In-Situ-Quellverhalten von Polymeren in brennbaren Fluiden
Image Innovativer Helium-Kleinverflüssiger
Image Thermosyphon mit in situ beschichtetem Verdampfer
Image Vakuum-Flüssigeis-Technologie
Image ZeroHeatPump
Image Korrosionsinhibitor für Absorptionskälteanlagen
Image Untersuchung von materialabhängigen Parametern

Sie befinden sich hier:  Startseite /  Technologietransfer


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte - Technologietransfer

Image

Mikrowärmeübertrager in der Kältetechnik

3D-Fertigung von Mikrowärmeübertragern

Image

Elektrochemische Dekontamination leitfähiger Oberflächen „EDeKo II“

Verbesserung der hygienischen Prävention durch elektrochemische Dekontamination

Image

Heat2Power

Veredlung der Abwärme von Brennstoffzellen

Image

Thermische Kälteerzeugung / Absorptionskältetechnik

Kraft-Wärme-Kälte-Kopplung, Fernwärme, Solarthermie oder Abwärme zur Kälteerzeugung