Aktuelle Forschungsprojekte

Image Sole (Wasser)-Wärmepumpen
Image Pulse-Tube-Kühler mit Hermetikverdichterantrieb
Image Chemische Wasserbinder/Enteiser für Kältekreisläufe - CheWa
Image Kalibrierung von Tieftemperatursensoren
Image Zertifizierung von effizienten Klima- und Lüftungsanlagen durch das neue „Qualitätssiegel Raumlufttechnik“ für Nichtwohngebäude
Image Filterprüfungen
Image Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen
Image Innovative Fertigungstechnologien für Kryosorptionssysteme
Image Mollier hx-Diagramm
Image ML-basierte Module für intelligente TGA-Planungssoftware
Image Cl.Ai.Co - Clever Air Components
Image Apparatur und Verfahren zur Degradationsprüfung
Image Entwicklung eines schnellen Rechenverfahrens..
Image CO2-Trockeneis-Sublimation zur Tieftemperaturkühlung
Image Charakterisierung von Supraleitern in Wasserstoffatmosphäre
Image Verbundvorhaben Öl-Effiziente Kältesysteme – Schmierstoffwahl für Kälteanlagen unter dem Gesichtspunkt der Energieeffizienz

Sie befinden sich hier:   /  Startseite


Industrie-4.0-Membran-Wärme-und-Stoffübertrager (i-MWÜ4.0)

EuroNorm INNO-KOM

04/2019 - 09/2021

Dipl.-Ing. (FH) Hannes Rosenbaum

+49-351-4081-5324

abgeschlossen

Vernetzung des gesamten Lebenszyklus einer multifunktionalen RLT-Komponente

Membran-Wärme-und Stoffübertrager (MWÜ)...

... ermöglichen einen Wärme- und Stofftransport ohne Direktkontakt der beteiligten Medien. Eine Vielzahl der daraus resultierenden Anwendungspotentiale und Einsatzgebiete wurden am ILK Dresden bereits erfolgreich im Labormaßstab getestet. Dazu gehören u.a.:

  • Luftbefeuchtung
  • kondensatfreie sorptive Luftentfeuchtung
  • Wärme- und Feuchterückgewinnung im Kreislaufverbundsystem
  • indirekte Verdunstungskühlung in Klima- und Prozesslufttechnik

Zielstellung

Um Industrie-4.0- und Qualitätssicherungs-Standards zu erfüllen, wurden mit Planung, Auslegung und Fertigung vernetzbare Konstruktions-, Montage- sowie Prüfverfahren entwickelt. Zudem wurden Verfahren zur energetischen und hygienischen Zustandsdiagnose im Betrieb entwickelt und daraus ein parametergeführtes Wartungsmanagement zur Qualitätssicherung abgeleitet.

Der Ruf zur Realisierung energieeffizienter sowie nachhaltiger Technologien und Prozesse in der Klimatechnik betrifft besonders die Luftbe- und Entfeuchtung. Beispiel: Flüssigsorptionsprozesse. Neuartige Membran-Wärme- und Stoffübertrager, die messwertbasiert ausgelegt und anschließend über den ganzen Lebenszyklus, geprüft, gewartet und optimiert werden, können hierbei unterstützen.

Dipl.-Ing. (FH) Hannes Rosenbaum

Vorgehen

Die Entwicklung der Industrie-4.0-Membran-Wärme-und-Stoffübertrager basierte auf vier Schwerpunkten (Tools):

  • Für das PRÜFUNGSTOOL wurden Ansätze zur Adaption üblicher Prüfverfahren für Leckage, Dichtheit, Durchlässigkeit und Verarbeitungsqualität bzgl. zerstörungsfreien Prüfungen an Halbzeugen (iMWÜ-Fertigung) und im Anlagenbetrieb entwickelt.
  • Aufbauend auf die Erfassung, Speicherung und Auswertung von Langzeitmessdaten eines Funktionsmusters wurde das DIAGNOSETOOL sowie das CONTROLLING- UND VERNETZUNGSTOOL des iMWÜ4.0 erarbeitet. Im Fokus standen hygienische (Schimmelrisiko) und energetische Aspekte. Numerische Berechnungen mittels Bilanzgleichungen für Masse, Impuls, Energie und Spezies unterstützen die Selbstdiagnose und das maschinelle Lernen ebenso, wie Materialkenndaten aus Laborversuchen. Eigens wurden Rechenalgorithmen zur Implementierung in ein Online-Monitoring programmiert – für Vergleich und Analyse von Real- und Vergleichsprozess.
  • Lösungsansatz für das FERTIGUNGSTOOL (automatisierbare Herstellung des i-MWÜ4.0) war die konzeptionelle konstruktive Überarbeitung bzgl. einer automatisierbaren Herstellung/ Fertigung und Montage. Bevorzugt wurden serienfertigungstaugliche Materialien, Einzelteile, Halbzeuge, Anschlüsse und Verbindungstechnologien die eine Abstimmung von Bauteilanordnung und Montageablauf ermöglichen.

Gewonnene Erkenntnisse

Ergebnisse des erfolgreich abgeschlossen FuE-Projektes sind u.a.:

  • ein Prüfverfahren einschließlich Prüfvorrichtung zur zerstörungsfreien Prüfung durchströmbarer, mehrlagiger Textilverbunde (Schutzrechtanmeldung): Prüfung von Dichtheit / Leckage und Verarbeitungsqualität an nicht konfektionierten Halbzeugen
  • Monitoring der iMWÜ4.0-Zustandsdaten (LabView)
  • implementierter Algorithmus zur hygienischen Selbstdiagnose hinsichtlich Schimmelwachstumsrisiko
  • implementierbarer Python-Code des idealen Vergleichsprozesses im iMWÜ4.0 sowie der Berechnung realer Materialkenndaten aus Messdaten zur online-Analyse in Form des Soll-Ist-Vergleichs
  • neue konstruktive Ansätze für 2- und 3- fluidige Membran-Wärme- und Stoffübertrager

Interessiert?

Über das Forschungsprojekt hinaus planen wir die Bildung eines kompetenten Konsortiums, das die gesamte Prozesskette von der Auslegung, Herstellung und Konfektionierung textiler Wärme- und Stoffübertragerflächen bis zum Anlagenbau, der Prozesssteuerung und dem Energiemanagement am Endprodukt beim Endanwender abdeckt. Eine Zusammenarbeit mit Instituten und Firmen verschiedener Branchen ist jederzeit möglich und gewünscht:

  • Textilfertigung
  • Textilveredlung
  • Werkstoffprüfung
  • Membrantechnologie
  • Institute aus den Bereichen Textilforschung und Kunststofftechnik
  • Verarbeitende Kunststofftechnik und Verpackungstechnik
  • Luft- und Kältetechnik sowie 
  • RLT-Hersteller und Zulieferer
  • Endanwender

Bitte treten Sie mit uns in Kontakt, wenn Sie Interesse an einer Zusammenarbeit haben.

 


Ihre Anfrage zum Projekt

Weitere Projekte

Image

Magnetfeldbeeinflusster Schmelzpunkt des Wassers

Gesteuerte Unterkühlung von wasserhaltigen Produkten bei Gefrierprozessen

Image

Software für die TGA-Planung

Auslegung Kühllast und Jahressimulation (VDI 2078, VDI 6007, VDI 6020)

Image

Untersuchungen von Werkstoffen

Kompatibilität von Werkstoffen mit Kältemitteln, Ölen und Kühlsolen

Image

Lebensdauerprognose von Hermetikverdichtersystemen

Teilentladungen in Motorwicklungen