Aktuelle Forschungsprojekte

Image Leistungsprüfung an Kältemittelverdichtern
Image Photometrisches Messverfahren zur Bestimmung der Luftwechselrate in Innenräumen - IO-Scan
Image Prüfstandsbau zur Festigkeitsprüfung und Dichtheitsprüfung
Image Drallfrei unterwegs...
Image Dynamische Gebäude- und Anlagensimulation mit TRNSYS
Image Seminar Lecksuche / Dichtheitsprüfung in der Kältetechnik
Image Ressourcenoptimierung und Beschleunigung von Strömungssimulationen mittels künstlicher Intelligenz
Image Software für Prüfstände
Image Neues sorptives Entfeuchtungssystem mit Energiespeicherung mit Naturmaterial - SEENaM
Image Zertifizierung von effizienten Klima- und Lüftungsanlagen durch das neue „Qualitätssiegel Raumlufttechnik“ für Nichtwohngebäude
Image Selbstoptimierendes Raumluftmanagementsystem
Image Prüfverfahren und Prüfvorrichtungen für ABEK Filterelemente
Image All-In-One Gerät für Gefriertrocknung und Biomaterialherstellung
Image Sole (Wasser)-Wärmepumpen
Image Charakterisierung von Supraleitern in Wasserstoffatmosphäre
Image PerCO

Sie befinden sich hier:   /  Startseite


Innovativer magnetbasierter Parawasserstoffkonverter

Euronorm GmbH

Dr. rer. nat. Erik Neuber

+49-351-4081-5122

Magnetische Gasseparation der Wasserstoffisomere

Molekularer Wasserstoff existiert in Form zweier verschiedener Isomere, welche sich durch die Konfiguration des Kernspins unterscheiden: Ortho- und Parawasserstoff, wobei letzterer bei Raumtemperatur nur 25% des Gesamtgases ausmacht. Zugleich wird Parawasserstoff in konzentrierter Form insbesondere in der Medizin und Chemie zur weitverbreiteten Methode der Hyperpolarisation (sog. PHIP – Parawasserstoff-induzierte Polarisation) genutzt, welche in MRT- bzw. NMR-Anlagen zur Kontraststeigerung zum Einsatz kommt.
Die Standardverfahren zur Herstellung dieses Spin-Isomers basieren jedoch allesamt auf kryogenen Methoden, welche einen verhältnismäßig hohen Energie- und Wartungsaufwand besitzen. Von daher besteht der Bedarf nach einer kostengünstigen und effizienten Möglichkeit zur Anreicherung von Parawasserstoff bei Raumtemperatur, so dass dieser im Anschluss direkt weiter verwendet werden kann.

Projektziele

  • Entwicklung eines innovativen Ortho-Para-Konverters, welcher bei Raumtemperatur nach dem Prinzip der magnetischen Gasseparation arbeitet;
  • Vermessung der Separationsfähigkeit des ausgewählten Prinzips bei Raumtemperatur und Optimierung des resultierenden Effektes sowie
  • Anreicherung auf 99% Parawasserstoff bei variablem Volumenstrom (mindestens 4 Standard-Liter pro Minute).

Ihre Anfrage zum Projekt