Aktuelle Forschungsprojekte

Image Wärmekraftmaschinen
Image Wetterschutzhaube mit integrierter nachhaltiger Kühlfunktion | NaKu-WSH
Image Energieeffizienzbewertung und optimierte Betriebsführung von gewerblichen Kälteanlagen
Image Zertifizierbare Verbindungsarten in der Kryotechnik
Image Solare Kühlung
Image Lüftungsgerät mit akustischer Regelungsoption
Image Intelligente innovative Stromversorgung für supraleitende Spulen
Image Filterprüfungen
Image Seminar Evakuieren und Trocknen von Kälteanlagen
Image Kältemengenzähler
Image Elektrische Auskopplung aus einer Expansionsturbine
Image Massenspektrometer
Image Thermosyphon mit in situ beschichtetem Verdampfer
Image KLAR
Image Elektrische Komponenten in Kältekreisläufen
Image Matrix-Design for Artificial Meat (MADAM)

Sie befinden sich hier:   /  Startseite


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte

Image

Untersuchung von materialabhängigen Parametern

Untersuchung der Permeationsverhalten

Image

Cool Up

Upscaling Sustainable Cooling

Image

Beladungssensor für Adsorptionsfilter

Sensorsystem zur Durchbruchserkennung bei der Gasabscheidung

Image

Ionokalorische Kälteerzeugung

Ionokalorisches Fest-Flüssigphasen-Kühlverfahren

Image

Tieftemperatur-Materialprüfkammer

Temperaturwechseltests für Bauteile bei extrem tiefen Temperaturen