Current research projects

Image Cryostats, Non-Metallic and Metallic
Image Practical training, diploma, master, bachelor
Image Thermal engines
Image Software for test rigs
Image Influenced melting point of water by magnetic field
Image Panel with indirect evaporative cooling via membrane
Image Ionocaloric cooling
Image Low Temperature Measuring Service
Image Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K
Image Tribological investigations of oil-refrigerant-material-systems
Image Software for technical building equipment
Image Electrical components in refrigeration circuits
Image Certifiable connection types in cryogenics
Image Refrigerants, lubricants and mixtures
Image Computational fluid dynamics CFD
Image Tensile and compression testing

You are here:   /  Home


Multifunctional electronic modules for cryogenic applications

4408,4414

The aim of the R&D project was the development of multifunctional electronic modules that enable the operation of a large number and variety of sensors to be used for cryogenic applications.

Usually, cryogenic sensors are located in cryostats and all cables have to be decoupled via feedthroughs, which leads to an increased heat input. To avoid this, we have developed and implemented various multiplexers as a part of the project, which work well under cryogenic conditions, see Figure 1 (left). The multiplexers are designed for an operation with a 10-wire bus system with arbitrary expandability. The multiplexers were developed and optimized for minimum interference, maximum function and compactness.

Another major goal of the R&D project was the development of a universal measuring bridge for any sensors, see Figure 1 (right). As a result, different electronic multifunction modules and cold multiplexers were developed, realized and validated. These modules are characterized by the fact that any sensors can be connected by means of a universal circuit board design. The selection of the modules was modular, which is why special components were selected and tested depending on the requirements. Among the options are: Different references (resistance, voltage), amplification factors, active shielding, battery operation, displays (TFT, LCD), interfaces (RS485, USB), storage options (SD card), electrical isolation, interface to multiplexers, and type of housing.

During development, special attention was paid to electromagnetic compatibility and interference sensitivity during switching operations, such as in heater control. The accuracy is determined by reference resistors and voltages. In addition, the time response of the facial expressions was a key parameter of the development in order to ensure a fast and stable measurement.

Within the R&D project a software was programmed which is available as a universal platform for any configuration of modules. The modules can be in-house developments or commercially available products. Each controller supports a freely definable number of sensors, actuators, controllers and binary inputs and outputs. Each sensor, actuator and controller can represent any common physical quantity. These include temperature, pressure, level, voltage, current, resistance etc.

With our development of a universal temperature measuring bridge, any temperature sensors can be read out with high accuracy, see Figure 2.

Your Request