Aktuelle Forschungsprojekte

Image Behavior of multiphase cryogenic fluids
Image Influenced melting point of water by magnetic field
Image Innovative Parahydrogen Generator Based on Magnets
Image Investigation according to DIN EN ISO 14903
Image Hybrid- Fluid for CO2-Sublimation Cycle
Image Calibration leak for the water bath leak test
Image Hydrogen and methane testing field at the ILK
Image Certification of efficient air conditioning and ventilation systems through the new "indoor air quality seal" for non-residential buildings
Image Test procedures for electrical components
Image Performance tests of condensing units
Image Non- invasive flow measurements
Image Humidifier System for High-Purity Gases
Image Computational fluid dynamics CFD
Image Innovative small helium liquefier
Image Software for technical building equipment
Image Cold meter

You are here:   /  Home


Development of a Cryogenic Magnetic Air Separation Unit

Federal Ministry for Economic Affairs and Climate Action

02/2022-07/2024

Erik Neuber

+49-351-4081-5122

Oxygen Enrichment by Applied Cryogenic Magnetohydrodynamics

Nowadays, for oxygen enrichment from air, various commercial options are available, among other things, pressure swing adsorption, cryogenic rectification, and membranes. Although well-established, most of these methods do have a relative high specific energy demand for small-to-medium production rates (in this context: 0–100 TPD (tonnes per day) of oxygen) and relative high purities (at least 90 vol% of oxygen) [1].

To close this gap, ILK Dresden intends to develop and optimise an efficient cryogenic magnetic air separation unit that enables oxygen enrichment by means of OGMS (open-gradient magnetic separation). Motivated by provisional first-shot experiments, for a first setup, the following parameters are being targeted:

  • Operating pressure: 1–3 bar(a);
  • Degree of purity: 95 vol% oxygen;
  • Production rate: 5 standard l/min oxygen;
  • Specific energy demand: 160–180 kWh/t oxygen;
  • Required time for start-up: 30–60 min;
  • Continuous operation;
  • Less maintenance requirements than pressure swing adsorption;
  • Comparable space requirements as pressure swing adsorption.

Moreover, based on the experimental results, the scalability of the system for higher production rates of up to 100 TPD oxygen shall be analysed.

For this patented technology, ILK Dresden is looking for industrial partners that have interest in financial participation, specific applications, or further developments.

Granted Patent:

DE 10 2021 109 146 A1


Your Request

Further Projects

Image

Pulse-Tube-Refrigerator with sealed compressor

for mobil use in the hydrogen technology

Image

Low Temperature Measuring Service

Measurement of Thermal Properties at Low Temperatures

Image

Practical training, diploma, master, bachelor

Student training - Education at ILK

Image

Test procedures for electrical components

Insulating properties of hermetic compressors

Image

3D - Air flow sensor

Anemometer for determination of 3d-air flow