Current research projects

Image Verification of storage suitability of cryo tubes
Image Tensile and compression testing
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Panel with indirect evaporative cooling via membrane
Image Test rigs for refrigeration and heat pump technology
Image Influenced melting point of water by magnetic field
Image Calibration leak for the water bath leak test
Image Breakthrough Sensor for Adsorption Filters (BelA)
Image Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K
Image Investigation of coolants
Image Calibration of Low Temperature Sensors
Image Cryostats, Non-Metallic and Metallic
Image Development of a Cryogenic Magnetic Air Separation Unit
Image CO₂ GAS HYDRATES FOR SUSTAINABLE ENERGY AND COOLING SOLUTIONS
Image Brine (water)-water heat pump
Image Filter Tests

You are here:   /  Home


IO-Scan - Integral measuring optical scanning method

INNO-KOM

02/2022 - 07/2024

M.Sc. Rebekka Grüttner

+49-351-4081-5314

IO-Scan

Development of a photometric measurement method for determining the air exchange rate in indoor areas

Motivation

  • Cost-effective, real-time assessment of indoor air quality in the form of air exchange rates
  • Verify and optimise the effectiveness of ventilation systems in occupied areas
  • Ability to evaluate aerosol reduction through the interaction of window ventilation, building ventilation system and mobile room air cleaners

Project Objective

  • Self-calibrating measuring system
  • Deviation from previous trace gas measurements should be within 10%.
  • Real-time results can detect and evaluate the influence of changes in the ventilation system during the measurement process
  • Intended measurement depth in the room: 1 m to 50 m

Solution Approach

  • The introduction of mist aerosols into the room air influences the light transmittance to be measured.
  • Transmittance of an air-aerosol mixture and use of measured transmittance to determine air exchange rate
  • Integral real-time optical measurement over individual indoor distances

[Translate to EN:] Ergebnisse / Aktueller Stand

[Translate to EN:]

[Translate to EN:]

[Translate to EN:]


Your Request

Further Projects

Image

Software for technical building equipment

Design cooling load and energetic annual simulation (VDI 2078, VDI 6007, VDI 6020)

Image

Measurements on ceiling mounted cooling systems

Comparative performance measurement

Image

Micro fluidic expansion valve

for increasing of the efficiency of small and compact cooling units

Image

Solar Cooling

Solar Cooling with Photovoltaic

Image

Hydrogen and methane testing field at the ILK

Simultaneously pressures up to 1,000 bar, temperatures down to –253°C