Current research projects

Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Investigation of material-dependent parameters
Image CFE-Test of Cooker Hoods
Image Corrosion inhibitor for ammonia absorption systems
Image Electrical components in refrigeration circuits
Image Test procedures for electrical components
Image Optimizing HVAC operation with machine learning
Image Certification of efficient air conditioning and ventilation systems through the new "indoor air quality seal" for non-residential buildings
Image Preformance measurements of heat exchangers
Image Computational fluid dynamics CFD
Image Panel with indirect evaporative cooling via membrane
Image Measurements on ceiling mounted cooling systems
Image Thermostatic Expansion Valves
Image Verification of storage suitability of cryo tubes
Image Thermal engines
Image Investigation of coolants

You are here:   /  Home


Mass Spectrometer

Industrie und Forschungsinstitute

Gunar Schroeder

+49-351-4081-5129

Determining the composition of gas mixtures in the high or ultra-high vacuum range

Mass spectrometry is a method for determining the composition of gas mixtures in the high or ultra-high vacuum range. It can be used to carry out qualitative and quantitative gas analyses and leak detection or to determine trace contamination.

The individual neutral gas particles are ionized by an electron impact ion source and separated from each other in an electric quadrupole field according to their mass-to-charge ratio. The filtered ions are then recorded by a detector. The ion current detected is proportional to the partial pressure of the respective gas component. For a more precise quantitative gas analysis, the relatively operating measuring instrument can be calibrated with a calibration gas.

The test set-up consists of a test chamber with a connected turbo-molecular-pump and fore vacuum pump. The mass spectrometer requires a vacuum <1,5×10-7 psi (<1×10-5 mbar) to be able to measure with high precision. The mass spectrometer and a vacuum sensor are mounted on the test chamber. The mass spectrometer is connected to a measuring PC with corresponding software.

Available measurement modes are:

  • Vacuum analysis, to determine residual gas components, evaluation as a plot of ion current and mass
  • Leak detection, with helium or another tracer gas, the ion current of the tracer gas or the corresponding mass is recorded and plotted over the time
  • Mass spectrum, evaluation of ion current and mass with user-defined specifications and time trend
Paramter Test value
Analysis Vacuum analysis, leak detection, mass spectrum, trace contamination
Detectable gases H2, He, N2, H2O, O2, CO2 usw.
Mass range 1 – 100 Da (1,66×10-27 – 1,66×10-25 kg)
Detection limit 1.5×10-15 psi / 3×10-13 mbar
Min. vacuum pressure and max. temperature range <7.3×10-6 psi / 5×10-4 mbar, < 150°C / 302°F

[Translate to EN:]


Your Request

Further Projects

Image

Software modules

Software for properties of refrigerants

Image

Verification of storage suitability of cryo tubes

Artificial aging of primary packaging for biobanking applications

Image

Preformance measurements of heat exchangers

Is the heat exchanger properly sized?

Image

Innovative small helium liquefier

Liquefaction rates from 10 to 15 l/h

Image

Filter Tests

INDUSTRIAL AND LABORATORY PRECIPITATORS