Aktuelle Forschungsprojekte

Image Investigation according to DIN EN ISO 14903
Image Service offer for Leak Detection and Tightness Test
Image Lifetime prediction of hermetic compressor systems
Image Thermostatic Expansion Valves
Image Preformance measurements of heat exchangers
Image 3D - Air flow sensor
Image OVERALL SYSTEM OPTIMIZATION OF REFRIGERATION PLANT SYSTEMS FOR ENERGY TRANSITION AND CLIMATE PROTECTION
Image Innovative Parahydrogen Generator Based on Magnets
Image High temperature heat pump
Image High Capacity Pulse Tube Cooler
Image Air-water heat pumps
Image Verification of storage suitability of cryo tubes
Image Practical training, diploma, master, bachelor
Image Certifiable connection types in cryogenics
Image Intelligent innovative power supply for superconducting coils
Image Humidifier System for High-Purity Gases

You are here:   /  Home


Optimizing HVAC operation with machine learning

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in progress

Intelligent control of HVAC systems – high comfort with low energy demand

Motivation

During operation, the energy efficiency of many HVAC systems remains considerably below the value predicted when planning. One reason is that especially complex systems with multiple generators, storages and consumer locations frequently are not operated optimally.

Aim of the project

Development of a tool for optimizing the operation of HVAC systems which uses machine learning (ML) methods and data from the digital building model (Building Information Model, BIM):

  • Optimization goal: high energy efficiency with at the same time high comfort for users

  • Saving operating costs, energy and carbon dioxide emissions due to increased efficiency

  • Continuous autonomous improvement of the ML algorithm by learning from new measured data with auto-adaptive reaction to changing conditions (building, system, use, smart meter for real time billing of energy and media, etc.)

Approach

  • Reproduction of the real system’s thermal-energetic behaviour in the machine learning system, training with BIM data, measured data and a digital twin of the real system
  • Application of ML methods for load forecasting (weather, usage patterns)

  • Automatic classification of utilisation scenarios, fault detection

  • Integration of available tools for efficient simulation of indoor air flows and for calculating energy demands

  • Co-Validation of optimization tool, experimental studies and digital twin

Interested?

Please get in touch with us if you are interested in a cooperation: klima@ilkdresden.de

 


Your Request

Further Projects

Image

Solar Cooling

Solar Cooling with Photovoltaic

Image

Hydrogen and methane testing field at the ILK

Simultaneously pressures up to 1,000 bar, temperatures down to –253°C

Image

Low noise and non metallic liquid-helium cryostat

Low-noise Magnetic Field Cryostat for SQUID-Applications

Image

Cryostats, Non-Metallic and Metallic

position indenpendent, highest endurance, tiltable for liquid helium and liquid nitrogen