Current research projects

Image Innovative small helium liquefier
Image Preformance measurements of heat exchangers
Image In-Situ-Swelling Behaviour of Polymer Materials in Flammable Fluids
Image Refrigerants, lubricants and mixtures
Image Humidifier System for High-Purity Gases
Image Multifunctional electronic modules for cryogenic applications
Image Innovative Parahydrogen Generator Based on Magnets
Image Practical training, diploma, master, bachelor
Image Filter Tests
Image Measurements on ceiling mounted cooling systems
Image Thermal engines
Image Non- invasive flow measurements
Image State of system and failure analyses
Image Low temperature – test facilities
Image Mass Spectrometer
Image Low Temperature Tribology

You are here:   /  Home


Investigation of material-dependent parameters

Industry and R&D

Gunar Schroeder

+49-351-4081-5129

Investigation of the permeation behavior

Permeation is the penetration of solid matter by another substance. The driving force for this is a gradient of the chemical potential of the permeate. In practice, this gradient is replaced by a measurable quantity such as the pressure gradient. The permeability of a material depends on the surface temperature and is usually specified with the unit \( \frac{\mu g}{cm^2\:min} \)

Without external influences, the permeate always moves in the direction of the lower concentration or the lower partial pressure. For theoretical consideration, permeation can be divided into three sections across the solid:

  • Sorption, for example, a gas is absorbed at the surface of the solid
  • Diffusion, this gas diffuses through the solid through molecular gaps towards the surface with a lower gas concentration
  • Desorption, the gas is released again from this surface

The experimental setup to investigate this process, see the following figures, essentially consists of a sample chamber. The sample is mounted with a seal or against a sealing surface. A test gas with a defined overpressure is applied to the volume on the "left" of the sample. The volume to the "right" of the sample is connected to a detector. The pressure on both sides of the sample, the temperatures and the gas flow rate are measured over a longer period of time (24 - 48 h).

Parameter Sample limits
materials plastics, metals
dimensions, diameter, and wall thickness 58 ... 60 mm, 1 ... 3 mm
other dimensions on request
pressure difference up to 10 bar (145 psi)
temperature range room temperature, other conditions on request
test gas helium or hydrogen
detector measuring range up to \(10^{-9} \frac{mbar\:l}{s} \), optional with calibration

 


Your Request

Further Projects

Image

Development of a Cryogenic Magnetic Air Separation Unit

Oxygen Enrichment by Applied Cryogenic Magnetohydrodynamics

Image

Software for test rigs

Individual software for complex tests and evaluation

Image

Brine (water)-water heat pump

Test according DIN EN 14511 and 14825

Image

High temperature heat pump

Using waste heat from industrial processes

Image

Air-water heat pumps

Test according DIN EN 14511 and 14825