Current research projects

Image Behavior of multiphase cryogenic fluids
Image Reducing the filling quantity
Image Modular storage system for solar cooling
Image CO₂ GAS HYDRATES FOR SUSTAINABLE ENERGY AND COOLING SOLUTIONS
Image Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K
Image Low noise and non metallic liquid-helium cryostat
Image High Capacity Pulse Tube Cooler
Image Measurement of insulated packaging
Image CFE-Test of Cooker Hoods
Image Corrosion inhibitor for ammonia absorption systems
Image Test method for high - temperature heat pump - oils
Image Software for technical building equipment
Image Panel with indirect evaporative cooling via membrane
Image Tensile and compression testing
Image Lifetime prediction of hermetic compressor systems
Image Ionocaloric cooling

You are here:  Home /  Research and Development


Behavior of multiphase cryogenic fluids

Matthias Schneider

+49-351-4081-5126

experimental und numerical investigations

With the help of this basic research project, processes that occur during the sudden evaporation of cryogenic media should be better understood, described and evaluated. This should create possibilities for improved design and efficient operation of safety elements and power transmitting components in plants with cryogenic media.
A well-founded theoretical understanding of the dynamic calculation and evaluation of boiling cryogenic media will be developed. In order to obtain, for example, a concrete component behaviour under cryogenic conditions, numerical descriptions are required beyond the design calculations, both for fluid dynamics and for the spatial and temporal change in temperature.
Parallel to this, the experimental basis for the design of complex cryogenic components and systems engineering is being improved.
The objectives and results of the preliminary research project include

  • Calculated parameters from various numerical simulations for essential cryogenic components
  • Extensive experimental results for variations of the underlying geometry, advantageous process control, improved design of components
  • Basic thermodynamic processes in gas chillers
  • Calculation algorithms for the description of dynamic heat transport phenomena
  • Evaluation of critical plant conditions
  • Suitable materials for cryostat components and cryogenic plants
  • Novel components e.g. for small helium mass flows

An application project for the development of heat exchangers for cryogenic multiphase fluids is planned.

Video of the mass transfer rate between the liquid and the vapour phase inside a Venturi tube

If you can not see the video, please use the external link to YouTube.


Your Request

Further Projects - Research and Development

Image

Air-water heat pumps

Test according DIN EN 14511 and 14825

Image

High temperature heat pump

Using waste heat from industrial processes

Image

Micro heat exchangers in refrigeration

3D-printing of micro heat exchangers

Image

Electrochemical decontamination of electrically conducting surfaces „EDeKo II“

Improvement of sanitary prevention by electrochemical decontamination