Current research projects

Image Measurement of insulated packaging
Image Development of a Cryogenic Magnetic Air Separation Unit
Image Solar Cooling
Image Test rigs for refrigeration and heat pump technology
Image Tribological investigations of oil-refrigerant-material-systems
Image Investigation according to DIN EN ISO 14903
Image Software for test rigs
Image High Capacity Pulse Tube Cooler
Image Calibration of Low Temperature Sensors
Image Energy efficiency consulting - cogeneration systems
Image Optimizing HVAC operation with machine learning
Image Characterisation of Superconductors in Hydrogen Atmosphere
Image CFE-Test of Cooker Hoods
Image Overall System Optimization of Refrigeration Plant Systems for Energy Transition and Climate Protection
Image Test method for high - temperature heat pump - oils
Image CO₂ GAS HYDRATES FOR SUSTAINABLE ENERGY AND COOLING SOLUTIONS

You are here:  Home /  Research and Development


Innovative Manufacturing Technologies for Cryosorption Systems

Euronorm, R&D

Sandra Tippmann

+49-351-4081-5131

Vacuum Pumps for UHV and XHV

A cryosorption system is defined as a vacuum pump that captures gas on cryogenic surfaces (gas-binding vacuum pump). Thus pressures lower than 5-12 mbar are obtainable (realisation of UHV - ultrahigh vacuum and XHV - extremely high vacuum). Cryosorption systems rely on very good heat transfer performance. This is currently being achieved with a complex, cost-intensive and risky manufacturing process. Therefore the aim of this project is to develop a new manufacturing technology that does not have this disadvantage.

 

For this purpose, thermodynamically important variables, such as sorption heat and heat transfer resistance were determined mathematically. A test sample was developed and constructed based on these results.

After completion of the design the test sample will be produced.

In the further course of the R&D project a test stand will be set up on which the test sample can be measured. These measurements will be checked and validated in a CFD simulation. With the help of the CFD model, various simulations for future cryosorption systems can be carried out. For example cooling times for different activated carbon masses or the thermal performance under different conditions for the cooling medium can be determined using this method.

Finally the sample production (functional sample) of a cryosorption system made of stainless steel with a precisely defined heat transfer behaviour takes place. The functional model is measured in relation to the cooling performance and pressure loss of the cooling medium and the results obtained will be included into the creation of a process instruction for manufacturing future cryosorption systems.


Your Request

Further Projects - Research and Development

Image

Characterisation of Superconductors in Hydrogen Atmosphere

Are superconductors really compatible with hydrogen?

Image

Corrosion inhibitor for ammonia absorption systems

An alternative to chromium(VI) compounds

Image

Development of a Cryogenic Magnetic Air Separation Unit

Oxygen Enrichment by Applied Cryogenic Magnetohydrodynamics

Image

Brine (water)-water heat pump

Test according DIN EN 14511 and 14825