Current research projects

Image Preformance measurements of heat exchangers
Image Non- invasive flow measurements
Image Development of test methods and test rigs for stationary integrated refrigeration units
Image Performance tests of condensing units
Image Innovative Manufacturing Technologies for Cryosorption Systems
Image Performance tests of refrigerant compressors
Image Lifetime prediction of hermetic compressor systems
Image Hybrid- Fluid for CO2-Sublimation Cycle
Image Cold meter
Image Behavior of multiphase cryogenic fluids
Image Influenced melting point of water by magnetic field
Image All-in-one device for freeze-drying and production of biomaterial
Image Development of a Cryogenic Magnetic Air Separation Unit
Image Practical training, diploma, master, bachelor
Image Innovative Parahydrogen Generator Based on Magnets
Image Hydrogen and methane testing field at the ILK

You are here:   /  Home


Development of a Cryogenic Magnetic Air Separation Unit

6236

Nowadays, for oxygen enrichment from air, various commercial options are available, among other things, pressure swing adsorption, cryogenic rectification, and membranes. Although well-established, most of these methods do have a relative high specific energy demand for small-to-medium production rates (in this context: 0–100 TPD (tonnes per day) of oxygen) and relative high purities (at least 90 vol% of oxygen) [1].

To close this gap, ILK Dresden intends to develop and optimise an efficient cryogenic magnetic air separation unit that enables oxygen enrichment by means of OGMS (open-gradient magnetic separation). Motivated by provisional first-shot experiments, for a first setup, the following parameters are being targeted:

  • Operating pressure: 1–3 bar(a);
  • Degree of purity: 95 vol% oxygen;
  • Production rate: 5 standard l/min oxygen;
  • Specific energy demand: 160–180 kWh/t oxygen;
  • Required time for start-up: 30–60 min;
  • Continuous operation;
  • Less maintenance requirements than pressure swing adsorption;
  • Comparable space requirements as pressure swing adsorption.

Moreover, based on the experimental results, the scalability of the system for higher production rates of up to 100 TPD oxygen shall be analysed.

For this patented technology, ILK Dresden is looking for industrial partners that have interest in financial participation, specific applications, or further developments.

Granted Patent:

DE 10 2021 109 146 A1

Your Request