Current research projects

Image Development of a Cryogenic Magnetic Air Separation Unit
Image Measurement of insulated packaging
Image Corrosion inhibitor for ammonia absorption systems
Image High Capacity Pulse Tube Cooler
Image Overall System Optimization of Refrigeration Plant Systems for Energy Transition and Climate Protection
Image Software for technical building equipment
Image Test method for high - temperature heat pump - oils
Image Investigation of materials
Image State of system and failure analyses
Image IO-Scan - Integral measuring optical scanning method
Image Calibration leak for the water bath leak test
Image Helium extraction from natural gas
Image Ionocaloric cooling
Image Innovative small helium liquefier
Image Solar Cooling
Image Innovative Manufacturing Technologies for Cryosorption Systems

You are here:  Home /  Research and Development


Low noise and non metallic liquid-helium cryostat

Industry and Research Institutes

Dr. rer. nat. Andreas Kade

+49-351-4081-5117

Low-noise Magnetic Field Cryostat for SQUID-Applications

Technical Data for the Cryostats

parametervalue
volume of liquid helium5 to 12 litre (other volume possible)
time to complete evaporation of helium3 to 7 days (depends on size)
heat load0.1 W (in standby operation)
rate of helium evaporation≤ 3 litre / day
holding time of the liquid heliumup to 4 days without refilling
initial noise of the cryostat< 3 fT / Hz½
helium leak test (He-vessel)< 1 × 10-11 mbar l / s

ILK Dresden developed low noise magnetic field and non metallic helium cryostats made of GRP (glass reinforced plastics) with a high helium and vacuum holding time.

The cryostats can operate in a direction independent operation mode (tiltable arrangement) and hence they are suitable for a plurality of several applications.

The ILK concept offers much lower permeation rates inside the He-reservoir as comparable models from other manufacturers and is therefore perfect for SQUID (superconducting quantum interference device) applications and other long-term measurements.
 
The technical design of the cryostats is thus predestined for future sensor generation.

Specification

  • suitable for the cooling of SQUID-Sensors
  • non-metallic (GRP)
  • fast filling with LHe via thermosiphon
  • GRP exhaust gas cooled radiation shield for high efficiency.
  • small cold-warm distance feasible
  • low maintenance 
  • other design variants possible on costumer request

Low noise magnetic field

The low-noise magnetic field of the cryostat was tested in the magnetically shielded room BMSR-1 of PTB Berlin and is smaller than the lowest resolution limit of the measurement system used, see figure below.


Your Request

Further Projects - Research and Development

Image

Innovative small helium liquefier

Liquefaction rates from 10 to 15 l/h

Image

Filter Tests

INDUSTRIAL AND LABORATORY PRECIPITATORS

Image

Low Temperature Tribology

Tribological studies at cryogenic temperatures

Image

Refrigerants, lubricants and mixtures

Determination of working fluid properties

Image

Reduction of primary noise sources of fans

...using numerical and experimental methods with contra-rotating axial fan