Current research projects

Image Testzentrum PLWP at ILK Dresden
Image Helium extraction from natural gas
Image Software for test rigs
Image Micro fluidic expansion valve
Image Low Temperature Measuring Service
Image Swirl-free on the move...
Image Low noise and non metallic liquid-helium cryostat
Image Verification of storage suitability of cryo tubes
Image Investigation of coolants
Image Certifiable connection types in cryogenics
Image Air-water heat pumps
Image Influenced melting point of water by magnetic field
Image Energy efficiency consulting - cogeneration systems
Image Combined building and system simulation
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Tribological investigations of oil-refrigerant-material-systems

You are here:  Home /  Research and Development


Panel with indirect evaporative cooling via membrane

INNO-KOM

01/2023 - 06/2025

Dipl.-Ing. (FH) Hannes Rosenbaum

+49-351-4081-5324

Natural Cooling Panel

Development of a decentralised cooling panel with outdoor air connection, without refrigerant, without humidity input into the room air, retrofittable and with coefficients of performance (COP) > 10

Motivation

  • GWP = 0; COP > 10; 100% renewable energy
  • Decentralised indirect evaporative cooling with no moisture in the indoor or outdoor air
  • Self-sufficient operation, rainwater harvesting
  • Radiant and convective air discharge

Project Objective

  • Application of regenerative and sustainable cooling via evaporative cooling in a decentralised air conditioning system (COP > 10)
  • Functional combination of evaporative cooling and supply of purified outdoor air
  • Novel membrane heat exchanger for two air streams and evaporation water including numerical calculation model
  • Novel convection and radiation efficient air outlet for minimum draught risk
  • Modular, cascadable unit concept for on-demand performance and off-grid and CO2-neutral operation (for PV power supply)
  • Ceiling-mounted, wall-mounted or free-standing cooling panels for residential and non-residential buildings, retrofittable and acoustically compliant

Solution Approach

  • Development of a membrane heat exchanger based on 4-layer textile laminates
  • Development of equipment based on supply air recirculation and exhaust air humidification processes
  • Development of an air outlet for convection and radiation cooling performance
  • MSR and system components for rainwater harvesting, site-independence and cascading

Your Request

Further Projects - Research and Development