Image Cold meter
Image Reducing the filling quantity
Image Software for technical building equipment
Image Investigation of coolants
Image Pulse-Tube-Refrigerator with sealed compressor
Image Lifetime prediction of hermetic compressor systems
Image Low Temperature Measuring Service
Image In-situ investigation concerning the swelling behaviour of polymer materials under elevated pressures and temperatures
Image Development of test methods and test rigs for stationary integrated refrigeration units
Image Certifiable connection types in cryogenics
Image Test rigs for refrigeration and heat pump technology
Image Innovative cryogenic cooling system for the recondensation / liquefaction of technical gases up to 77 K
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image Solar Cooling
Image Performance tests of condensing units
Image Micro fluidic expansion valve

You are here:  Home /  Technology transfer


Heat2Power

SAB

12/2019-11/2021

R. Noack

+49-351-4081-5219

HÖRMANN Vehicle Engineering, WätaS Wärmetauscher Sachsen

Refining of fuel cell waste heat

Project objective

The aim of the research project is to analysis of the possible applications of a fuel cell with recuperation in a rail vehicle. The focus is recognition of recuperation potentials from the waste heat flows within the rail vehicle and there especially the fuel cell drive. The waste heat that cannot be used directly is to be converted into electrical energy. The range of the vehicles is to be increased by partially substituting the drive energy for air-conditioning systems (fans, refrigerant compressors).

Approach

Recuperation via ORC / Kalina Process

Identified problematic fields

Low energy efficiency of the ORC process at given temperature levels

Research assignments

Economic use of this technology means:

  • Cost ratio must be in relation to range extension Basis of Comparison H2 consumption of a fuel cell train without recuperation.
  • Low additional weight - energy yield must be significantly higher than the energy requirement resulting from the additional weight of the ORC recuperator
  • No additional environmental pollution due to working material
  • No increased hazard potential due to technology used

Project Background / Motivation

The current climate protection targets and the resulting obligations to improve environmental compatibility and sustainability must result in rethinking processes in all areas of life and work.

Global networking and the resulting mobility of human as well as the transport of material goods are causing enormous environmental pollution, which is about to change through the choice of more suitable energy sources.

The expected ban on the burning of fossil fuels is forcing development concepts based on electric drives. One main problem is the storage of the energy source. There are concepts for using electric energy storage devices (batteries, accumulators). Another way is to distribute energy via overhead or underground lines. However, this requires an existing infrastructure, which cannot be built economically in all areas.
The detour via liquids with high energy densities, such as fuels (gasoline, diesel, methanol) is currently the most used common route.
Renewable energy sources, such as hydrogen, increasingly offer more and more an alternative despite high safety requirements.

Under these boundary conditions, a rail vehicle is to be developed which is to be used in regions that are oriented towards northern or central Europe with regard to geographic and climatic conditions. It is to be used on lines that cannot be electrified in an economically viable way.

The use of an ORC / Kalina process to convert waste heat into useful electrical energy in rail vehicles represents a particular challenge, as only low efficiencies can be achieved at the usable temperature level.

The aim of the project is to prove the usability of this technology. Thereby, economical aspects of application shall be considered. The increase in the range of a fuel cell powered rail vehicle, which is achieved by recuperating the waste heat from the fuel cells, is to be demonstrated.


Your Request

Further Projects - Technology transfer

Image

High temperature heat pump

Using waste heat from industrial processes

Image

Micro heat exchangers in refrigeration

3D-printing of micro heat exchangers

Image

Electrochemical decontamination of electrically conducting surfaces „EDeKo II“

Improvement of sanitary prevention by electrochemical decontamination

Image

Optimizing HVAC operation with machine learning

Intelligent control of HVAC systems – high comfort with low energy demand


Contact

Institut für Luft- und Kältetechnik - Gemeinnützige Gesellschaft mbH
Bertolt-Brecht-Allee 20, 01309 Dresden


Secretary to the Management

+49-351-4081-520

+49-351-4081-525

Image ISO 9001
Bild Zuse Mitglied Bild SIG