Aktuelle Forschungsprojekte

Image Kalibrierung von Tieftemperatursensoren
Image Thermische Kälteerzeugung / Absorptionskältetechnik
Image ML-basierte Module für intelligente TGA-Planungssoftware
Image Untersuchungen nach DIN EN ISO 14903
Image Lüftungsgerät mit akustischer Regelungsoption
Image Untersuchung von materialabhängigen Parametern
Image Entwicklung Prüfverfahren und Prüfstand für stationäre Einbau-Kältesätze
Image Prüfstand für Ventilatoren nach DIN EN ISO 5801
Image Kälte-Erzeugung und Kältespeicherung
Image Nachweis der Lagerbeständigkeit von Kryoröhrchen
Image Stoffdatenmodule
Image In-Situ-Untersuchungen zum Quellverhalten von Polymerwerkstoffen unter erhöhten Drücken und Temperaturen
Image Prüfverfahren zur dynamischen Alterung von Werkstoffen
Image Innovativer Helium-Kleinverflüssiger
Image Pulse-Tube Kryokühler
Image Wärmekraftmaschinen

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


American Institut of Physics publiziert mikroskopische Aufnahme

des ILK Dresden

Nur außergewöhnliche Aufnahmen schaffen es in die Druckausgabe der "physics today".

Physics Today 74, 8, 64 (2021); https://doi.org/10.1063/PT.3.4823

Diese mikroskopische Aufnahme aus dem ILK Dresden gehört jetzt dazu. Sie entstand in Kooperation mit der University of Science and Technology Wrocław (Polen) und der University of Padova (Italien) unter Federführung von Robert Mulka (UoW) und Matthias H. Buschmann (ILK Dresden). Der Trocknungsprozess eines 10 Mikroliter großen Tropfens einer Siliziumdioxidsuspension wurde mikroskopisch gefilmt. Am Ende des Prozesses zeigte sich das charakteristische, von vertrockneten Tee- oder Kaffeetropfen her bekannte, Ringmuster (coffee-ring pattern) mit einem Durchmesser von ca. 3 mm. Ziel der Untersuchung war es, die Ausbildung nanoporöser Beschichtungen von Verdampferflächen, zum Beispiel in Thermosyphons, besser zu verstehen.

Risse sind im täglichen Leben allgegenwärtig. Ihre Abmessung variiert über mehrere Größenordnungen, von 500 μm, wie im untersuchten Tröpfchen, bis hin zu dem 2017 entdeckten und 140 km langen Riss im Larsen-C-Schelfeis der Antarktis.

Robert Mulka, Matthias H. Buschmann und ihre Kollegen wollten die Rissbildung und den Prozess der Austrocknung genauer untersuchen. Zu diesem Zweck dosierten sie Tröpfchen einer wässrigen Siliziumdioxidsuspension (Partikelgröße ca. 70 nm) auf verschiedene metallische Substrate. Ein Mikroskop mit angeschlossener Kamera zeichnete den Trocknungsprozess unter Laborbedingungen auf.

Das publizierte Image zeigt das Endstadium des Trocknungsprozesses mit vollendeter Rissbildung. Deutlich sind der Kaffeering und die radialen Risse zu erkennen. Der äußere Rand des Tröpfchens zeigt tangentiale Spiralrisse. Letztere entstehen zuerst und induzieren die massiveren Radialrisse.

Das  Zusammenspiel von Marangonikonvektion, getrieben durch die Gradienten der Oberflächenspannung auf der Oberfläche des Tröpfchens und der Kapillarströmung im Inneren des Tröpfchens, transportiert die Siliziumdioxidpartikel zu dessen Rand und formt so den Kaffeering in der Siliziumdioxidbeschichtung. Mit deren fortschreitender Austrocknung bilden sich Zug- und Scherspannungen aus, die durch die Rissbildung abgebaut werden. Die Form der Risse hängt dabei von der lokalen Spannungsverteilung ab. Die Spiralrisse entstehen zunächst an zufälligen Stellen des Randes, wenn sich Teile der Siliziumdioxidbeschichtung vom Substrat ablösen. Die Radialrisse sind Ergebnis der Wechselwirkung von Kapillardruck und Scherspannung zwischen Siliziumdioxidschicht und Substrat.

(Mulka et al., 623, (2021) 126730, https://doi.org/10.1016/j.colsurfa.2021.126730).  


Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

Magnetfeldbeeinflusster Schmelzpunkt des Wassers

Gesteuerte Unterkühlung von wasserhaltigen Produkten bei Gefrierprozessen

Image

Lebensdauerprognose von Hermetikverdichtersystemen

Teilentladungen in Motorwicklungen

Image

Luft-Wasser Wärmepumpen

Prüfungen nach EN 14511 und 14825

Image

Heat2Power

Veredlung der Abwärme von Brennstoffzellen

Image

Nichtinvasive Strömungsmessung

PDPA - Strömungsfelder und Partikelgrößen