Aktuelle Forschungsprojekte

Image Mollier hx-Diagramm
Image Pulse-Tube-Kühler mit Hermetikverdichterantrieb
Image CO2-Trockeneis-Sublimation zur Tieftemperaturkühlung
Image Wärmekraftmaschinen
Image Zertifizierbare Verbindungsarten in der Kryotechnik
Image Wasserstoff- und Methan-Versuchsfeld am ILK
Image Prüfverfahren für Außenluftfilter
Image Prüfbad-Haube
Image Entwicklung und Erprobung des Einsatzes von Phasenwechselmaterialien an WEMS (Window Energy Management Systems)
Image Kälte-Erzeugung und Kältespeicherung
Image ML-basierte Module für intelligente TGA-Planungssoftware
Image Panel mit indirekter Verdunstungskühlung über Membran
Image Entwicklung eines kryogenen magnetbasierten Luftzerlegers
Image Tieftemperaturtribologie
Image Cl.Ai.Co - Clever Air Components
Image Zug- und Druckprüfung

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Dynamische Gebäude- und Anlagensimulation mit TRNSYS

Industrie und Bauwesen

auf Anfrage

Dipl.-Ing. (FH) Hannes Rosenbaum

+49-351-4081-5324

Wissenschaftliche Analyse thermodynamischer Prozesse in Gebäuden und Anlagen

TRNSYS allgemein

TRNSYS (TRaNsient SYstem Simulation Program) ist ein Programm zur dynamischen Systemsimulation, basierend auf numerischen Routinen zur Lösung partieller Differentialgleichungssysteme. Es ermöglicht die Bilanzierung instationärer Prozesse in “beliebiger” Zeitschrittauflösung. Das ILK Dresden nutzt TRNSYS für Berechnung sowohl einfacher Wärmetransport- und Wärmespeichervorgänge als auch komplexer Gebäude- und Anlagenmodelle im Mehrzonenmodell.

Thermische Simulationen von Mehrzonen- Gebäudemodellen

…ermöglichen die Berechnung zeitlich aufgelöster und statistisch auswertbarer (dynamischer) Verläufe von:

  • Luftzustandsgrößen (Temperatur- und Feuchte) und Oberflächentemperaturen
  • sensiblen und latenten Lasten (Heizlast, Kühllast,…)
  • Energieströmen und Bilanzen zwischen benachbarten Zonen
  • Wetter- und Strahlungsdaten, sowie deren Wirkung auf die Zonen und einzelne Bauteile des Gebäudes

…unterstützen Planungsprozesse oder FuE-Aufgaben und beantworten wichtige Fragestellungen, wie:

  • dynamisches Verhalten von Raum bzw. Zone
  • Einfluss bauphysikalischer und konstruktiver Bauteileigenschaften der Gebäudehülle
  • Über- und Unterschreitungshäufigkeiten vorgegebener Sollwerte
  • gebäudebezogene Schaltkriterien für Regelkreise (bspw. Heizgrenztemperatur)
  • Wirkung zusätzlicher thermischer (sensibler und/oder latenter) Speichermassen in Raum oder Bauteil (z.B. PCM in Raumumschließungsflächen/Wänden)
  • Vergleich unterschiedlicher Sonnenschutz- und Verschattungseinrichtungen einschließlich deren Ansteuerung

Das Gebäudemodell berücksichtigt zudem die Gebäudestruktur (Geometrie, Bauteileigenschaften, Standort bzw. Wetterdaten), das Nutzungsprofil sowie Anforderungs- und Lastprofile. Es wird ergänzt durch aktive Bauelemente und individuell programmierte Inputs.

Die numerischen Routinen von TRNSYS basieren auf normierten Berechnungsverfahren (u.a. DIN EN ISO 13791 und DIN EN ISO 13792)

Kombinierte dynamische Gebäude- und Anlagensimulationen

…basieren auf einer Erweiterung des Gebäudemodells um Anlagenmodelle (mathematisch oder modular) und

…ermöglichen vertiefende Analysen und Detailuntersuchungen unter Berücksichtigung der Interaktion zwischen Anlage(n) und Gebäude/Zone(n).

Kombinierte Gebäude- und Anlagensimulation beinhalten üblicherweise die Berechnung:

  • zeitlicher Verläufe von Leistungsanforderungen an eine Anlage oder deren Komponenten
  • von End- und Primärenergiebedarfe (Jahresgang und Summenwerte) als Vergleichskennwerte bspw. für die Gegenüberstellung verschiedener Anlagenkonfigurationen
  • zeitlicher Veränderungen von Oberflächentemperaturen und Luftzustandsgrößen (Temperatur- und Feuchte) oder anderer Istwerte in Abhängigkeit von den Leistungsparametern der modellierten Anlagen
  • von Über- und Unterschreitungshäufigkeiten vorgegebener Sollwerte

Die Ergebnisse der Gebäude- und Anlagensimulation helfen:

  • bei der Bewertung der Funktionalität und Wirkungsweise unterschiedlicher Gebäude-Anlagen-Konzepte bzw. Energiekonzepte, im Hinblick auf Energieeffizienz und Nachhaltigkeit
  • der Analyse des Einflusses unterschiedlicher Anlagenkonfigurationen, Anlagenleistungen und/oder Regelungsszenarien auf das thermische Verhalten des Gebäudes
  • der Ermittlung des Anforderungsprofils für einzelne Anlagenkomponenten
  • dem ILK bei der zur Entwicklung klimatechnischer Komponenten in FuE-Projekten

Das ILK Dresden setzt die dynamische kombinierte Gebäude- und Anlagensimulation mit TRNSYS auch zur gezielten Ermittlung von Randbedingungen für Strömungssimulationen ein. Im Ergebnis der kombinierten Gebäude- und Anlagensimulation positiv bewertete Energiekonzepte oder Anlagenkonzeptionen können somit – beispielsweise unter dem Gesichtspunkt der thermischen Behaglichkeit (Strömungsgeschwindigkeiten, Temperaturverteilung, Zugluftrisiko) – vertiefend analysiert und bewertet werden.

Anlagensimulationen

…können auch losgelöst vom Gebäude erfolgen – beispielsweise wenn anstelle eines Gebäudes oder Raumes das dynamische Verhalten einer Anlage im Vordergrund steht. Für die Modellierung stehen dem ILK Dresden sowohl TRNSYS-Standard-Types, als auch TESS-Models zur Verfügung. Auch eine mathematische Modellierung regelungstechnischer oder thermodynamischer Zusammenhänge über Kennlinienmodelle und Größengleichungen ist möglich.

Einsatziele der Anlagensimulation im Fall des ILK sind:

  • Abbildung des thermischen Verhaltens einer neu entwickelten Komponente oder eines konkreten Betriebsszenarios oder Regelungsregimes
  • Abgleich der Simulationsergebnisse mit Messdaten unter Berücksichtigung thermischer, zeitlicher und regelungstechnischer Randbedingungen der Messung
  • Simulation des zu erwartenden Verhaltens und Prognose möglicher Effekte (Energiebedarfe oder –erträge, Häufigkeit etwaiger „worst-case“-Szenarien) der modellierten Anlage bei veränderten Randbedingungen
  • Ableitung möglicher Optimierungspotentiale

Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

Charakterisierung von Supraleitern in Wasserstoffatmosphäre

Sind Supraleiter wirklich mit Wasserstoff kompatibel?

Image

Korrosionsinhibitor für Ammoniak-Absorptions-Anlagen

Eine Alternative zu Chrom(VI)-Verbindungen

Image

Entwicklung eines kryogenen magnetbasierten Luftzerlegers

Angewandte kryogene Magnetohydrodynamik zur Sauerstoffanreicherung

Image

Sole (Wasser)-Wärmepumpen

Prüfungen nach EN 14511 und 14825

Image

Hochtemperatur Wärmepumpe

Abwärme von Industrieprozessen nutzen