Aktuelle Forschungsprojekte

Image Entwicklung Prüfverfahren und Prüfstand für stationäre Einbau-Kältesätze
Image Filterprüfungen
Image Druckfestigkeitsprüfung von CO2 Anlagen
Image Kryoflüssigkeitspumpen für tiefkalt verflüssigte Gase wie z.B. LIN, LOX, LHe, LH2, LNG, LAr
Image Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen
Image Stoffdatenmodule
Image Prolatent
Image Aktives Schichtladesystem für Kaltwasserpufferspeicher
Image Energieeffizienzberatung Kraft-Wärme-Kälte
Image Initiierung eines Lithiumkreislaufes – Recycling von Lithiumbromidlösungen aus Absorptionskälteanlagen (ReLiA)
Image Kältemittel- und Kältemaschinenöl-Untersuchungen
Image Innovative Fertigungstechnologien für Kryosorptionssysteme
Image Prüfung mobiler Leckdetektoren nach DIN EN 14624
Image Elektrochemische Dekontamination leitfähiger Oberflächen „EDeKo II“
Image Entwicklung von Handlungsempfehlungen für praxisgerechte Lüftungskonzepte und Entwicklung eines CO2-Berechnungstools
Image Solare Kühlung

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-684

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung

Image

Automatisierte Gasschleife

Füllmengenreduktion für Kältemittel

Image

Rohrgekapselte Latentwärmespeicher

Neuartige Wärmespeicherelemente

Image

Filterprüfung

Prüfverfahren und Prüfvorrichtung für ABEK Filterelemente


Kontakt

Institut für Luft- und Kältetechnik - Gemeinnützige Gesellschaft mbH
Bertolt-Brecht-Allee 20, 01309 Dresden


Sekretariat der Geschäftsleitung

+49-351-4081-520

+49-351-4081-525

Bild ISO 9001
Bild Zuse Mitglied Bild SIG