Aktuelle Forschungsprojekte

Image Prolatent
Image Thermische Kälteerzeugung / Absorptionskältetechnik
Image Neues sorptives Entfeuchtungssystem mit Energiespeicherung mit Naturmaterial - SEENaM
Image Akustik und Schwingungen
Image Kryoflüssigkeitspumpen für tiefkalt verflüssigte Gase wie z.B. LIN, LOX, LHe, LH2, LNG, LAr
Image Elektronische Multifunktionsmodule für kryogene Anwendungen
Image Kalibrierung von Tieftemperatursensoren
Image CFE-Test Dunstabzugshauben
Image Ressourcenoptimierung und Beschleunigung von Strömungssimulationen mittels künstlicher Intelligenz
Image Entwicklung Prüfverfahren und Prüfstand für stationäre Einbau-Kältesätze
Image Sole (Wasser)-Wärmepumpen
Image Thermische Speicherung mit PCM
Image Gesamtsystemoptimierung von Kältetechnischen Anlagensystemen für Energiewende und Klimaschutz
Image Tribologische Untersuchungen im System Öl-Kältemittel-Werkstoff
Image Schalldämpfer mit integrierten Abgaswärmeübertrager
Image StellarHeal – Wound Healing in Space and on Earth

Sie befinden sich hier:  Startseite /  Forschung und Entwicklung


Wasserstoff- und Methan-Versuchsfeld am ILK

BMWi

Dr. rer. nat. Andreas Kade

+49-351-4081-5117

Gleichzeitig Drücke bis 1000 bar, Temperaturen bis –253°C

Am ILK Dresden wird ein innovatives Versuchsfeld für kryogene Hochdruckanwendungen mit Wasserstoff (H2), Methan (CH4) und Methan-Wasserstoff-Gemischen betrieben. Dieses ermöglicht die Durchführung verschiedener Dienstleistungen, unter anderem:

  • Bauteiltests und ‑qualifizierungen bei Temperaturen von 20 K (−253 °C) bis Raumtemperatur und gleichzeitig Drücken von Hochvakuum bis 1000 bar (bspw. Dichtungstests und Permeationstests).
  • Untersuchung von Be- und Entladevorgängen an kryogenen oder bei Raumtemperatur betriebenen Wasserstoff- und Methanspeichern (bspw. Adsorberspeicher und kryokomprimierter Wasserstoff).
  • Untersuchung von Katalysatoren für die Ortho-Para-Umwandlung von Wasserstoff.
  • Langzeitauslagerung von Bauteilen und Komponenten in Wasserstoff- oder Methanatmosphäre bei bis zu +200 °C und 160 bar zur Untersuchung von Degradationseffekten (bspw. Wasserstoffversprödung).
  • Neu- und Weiterentwicklung von verschiedenen Wasserstoff- und Methan-Komponenten (bspw. Rückkühlsysteme, Latentwärmespeicher, kryogene Druckspeicher, Wärmeübertrager und kryogene Pumpen).
  • Realisierung von Gesamtsystemen für Wasserstoff und Methan.

Das folgende Diagramm zeigt die Wasserstoff-Speicherdichte in Abhängigkeit von Druck und Temperatur:


Ihre Anfrage zum Projekt

Weitere Projekte - Forschung und Entwicklung