Aktuelle Forschungsprojekte

Image Tieftemperatur-Materialprüfkammer
Image Zertifizierung von effizienten Klima- und Lüftungsanlagen durch das neue „Qualitätssiegel Raumlufttechnik“ für Nichtwohngebäude
Image Dynamische Gebäude- und Anlagensimulation mit TRNSYS
Image Innovativer Helium-Kleinverflüssiger
Image Numerische und Experimentelle Untersuchung zum Gefährdungspotential durch SARS-CoV-2 in klimatisierten Räumen
Image Tribologische Untersuchungen im System Öl-Kältemittel-Werkstoff
Image Reduktion der Schallemission von Darrieus-Windturbinen
Image Leistungsangebot der Lecksuche und Dichtheitsprüfung
Image In-Situ-Untersuchungen zum Quellverhalten von Polymerwerkstoffen unter erhöhten Drücken und Temperaturen
Image Gesamtsystemoptimierung von Kältetechnischen Anlagensystemen für Energiewende und Klimaschutz
Image Prüfstände für Kälte- und Wärmepumpentechnik
Image ML-basierte Module für intelligente TGA-Planungssoftware
Image Innovative Fertigungstechnologien für Kryosorptionssysteme
Image Bewertungsverfahren für Systeme mit Sekundärluft und Raumwirkung
Image Prüfverfahren für Hochtemperaturewärmepumpen-Öle
Image Elektrische Komponenten in Kältekreisläufen

Sie befinden sich hier:  Startseite /  Messungen und Prüfungen


Wasserstoff- und Methan-Versuchsfeld am ILK

BMWi

Dr. rer. nat. Andreas Kade

+49-351-4081-5117

Gleichzeitig Drücke bis 1000 bar, Temperaturen bis –253°C

Am ILK Dresden wird ein innovatives Versuchsfeld für kryogene Hochdruckanwendungen mit Wasserstoff (H2), Methan (CH4) und Methan-Wasserstoff-Gemischen betrieben. Dieses ermöglicht die Durchführung verschiedener Dienstleistungen, unter anderem:

  • Bauteiltests und ‑qualifizierungen bei Temperaturen von 20 K (−253 °C) bis Raumtemperatur und gleichzeitig Drücken von Hochvakuum bis 1000 bar (bspw. Dichtungstests und Permeationstests).
  • Untersuchung von Be- und Entladevorgängen an kryogenen oder bei Raumtemperatur betriebenen Wasserstoff- und Methanspeichern (bspw. Adsorberspeicher und kryokomprimierter Wasserstoff).
  • Untersuchung von Katalysatoren für die Ortho-Para-Umwandlung von Wasserstoff.
  • Langzeitauslagerung von Bauteilen und Komponenten in Wasserstoff- oder Methanatmosphäre bei bis zu +200 °C und 160 bar zur Untersuchung von Degradationseffekten (bspw. Wasserstoffversprödung).
  • Neu- und Weiterentwicklung von verschiedenen Wasserstoff- und Methan-Komponenten (bspw. Rückkühlsysteme, Latentwärmespeicher, kryogene Druckspeicher, Wärmeübertrager und kryogene Pumpen).
  • Realisierung von Gesamtsystemen für Wasserstoff und Methan.

Das folgende Diagramm zeigt die Wasserstoff-Speicherdichte in Abhängigkeit von Druck und Temperatur:


Ihre Anfrage zum Projekt

Weitere Projekte - Messungen/ Prüfungen