Aktuelle Forschungsprojekte

Image Messung Isolierverpackung
Image Druckfestigkeitsprüfung von CO2 Anlagen
Image CO2-Trockeneis-Sublimation zur Tieftemperaturkühlung
Image Untersuchung von Kühlsolen
Image Leistungsmessung an Wärmeübertragern
Image Entwicklung eines kryogenen magnetbasierten Luftzerlegers
Image In-Situ-Untersuchungen zum Quellverhalten von Polymerwerkstoffen unter erhöhten Drücken und Temperaturen
Image Selbstoptimierendes Raumluftmanagementsystem
Image Prüfstandsbau zur Festigkeitsprüfung und Dichtheitsprüfung
Image Initiierung eines Lithiumkreislaufes – Recycling von Lithiumbromidlösungen aus Absorptionskälteanlagen (ReLiA)
Image Automatisierte Gasschleife
Image Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen
Image Elektrische Komponenten in Kältekreisläufen
Image Entwicklung Prüfverfahren und Prüfstand für stationäre Einbau-Kältesätze
Image Zustands- und Schadensanalysen
Image Untersuchungen an Deckenkühlgeräten

Sie befinden sich hier:  Startseite /  Softwareentwicklung


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte - Softwareentwicklung

Image

Elektronische Multifunktionsmodule für kryogene Anwendungen

Elektronik mit geringem Verkabelungsaufwand - mehr als 100 Sensoren über eine Durchführung

Image

Cl.Ai.Co - Clever Air Components

Entwicklung eines innovativen Systems für eine energieeffiziente Gebäudeklimatisierung

Image

Füllmengenreduzierung

Wie viel Kältemittel muss gefüllt werden?

Image

Selbstoptimierendes Raumluftmanagementsystem

Echtzeitsimulation von Raumströmungen

Image

Entwicklung eines schnellen Rechenverfahrens..

..für die Auslegung von Turbomaschinen basierend auf IBM