Aktuelle Forschungsprojekte

Image Modulares Speichersystem für solare Kühlung
Image Heat2Power
Image Magnetfeldbeeinflusster Schmelzpunkt des Wassers
Image Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen
Image Kältemengenzähler
Image Untersuchung von materialabhängigen Parametern
Image Energieeffizienzberatung Kraft-Wärme-Kälte
Image Elektrische Auskopplung aus einer Expansionsturbine
Image Untersuchung von Kühlsolen
Image All-In-One Gerät für Gefriertrocknung und Biomaterialherstellung
Image Prüfstände zur Messung der Luftleistung
Image Aktives Schichtladesystem für Kaltwasserpufferspeicher
Image Druckfestigkeitsprüfung von CO2 Anlagen
Image Leistungsprüfung an Verflüssigungssätzen
Image MetPCM
Image Hybrid- Fluid für CO2-Sublimations-Kältekreislauf

Sie befinden sich hier:   /  Startseite


Innovativer magnetbasierter Parawasserstoffkonverter

Euronorm GmbH

Dr. rer. nat. Erik Neuber

+49-351-4081-5122

Magnetische Gasseparation der Wasserstoffisomere

Molekularer Wasserstoff existiert in Form zweier verschiedener Isomere, welche sich durch die Konfiguration des Kernspins unterscheiden: Ortho- und Parawasserstoff, wobei letzterer bei Raumtemperatur nur 25% des Gesamtgases ausmacht. Zugleich wird Parawasserstoff in konzentrierter Form insbesondere in der Medizin und Chemie zur weitverbreiteten Methode der Hyperpolarisation (sog. PHIP – Parawasserstoff-induzierte Polarisation) genutzt, welche in MRT- bzw. NMR-Anlagen zur Kontraststeigerung zum Einsatz kommt.
Die Standardverfahren zur Herstellung dieses Spin-Isomers basieren jedoch allesamt auf kryogenen Methoden, welche einen verhältnismäßig hohen Energie- und Wartungsaufwand besitzen. Von daher besteht der Bedarf nach einer kostengünstigen und effizienten Möglichkeit zur Anreicherung von Parawasserstoff bei Raumtemperatur, so dass dieser im Anschluss direkt weiter verwendet werden kann.

Projektziele

  • Entwicklung eines innovativen Ortho-Para-Konverters, welcher bei Raumtemperatur nach dem Prinzip der magnetischen Gasseparation arbeitet;
  • Vermessung der Separationsfähigkeit des ausgewählten Prinzips bei Raumtemperatur und Optimierung des resultierenden Effektes sowie
  • Anreicherung auf 99% Parawasserstoff bei variablem Volumenstrom (mindestens 4 Standard-Liter pro Minute).

Ihre Anfrage zum Projekt

Weitere Projekte

Image

Pulse-Tube Kryokühler

für kryogene Hochleistungsanwendungen

Image

Pulse-Tube-Kühler mit Hermetikverdichterantrieb

mobil einsetzbar u.a. für die Wasserstofftechnologie

Image

Tieftemperaturtribologie

Tribologische Untersuchungen bei kryogenen Temperaturen

Image

Cl.Ai.Co - Clever Air Components

Entwicklung eines innovativen Systems für eine energieeffiziente Gebäudeklimatisierung