Aktuelle Forschungsprojekte

Image Untersuchungen an Deckenkühlgeräten
Image Leistungsprüfung an Verflüssigungssätzen
Image Untersuchung von materialabhängigen Parametern
Image Kalibrierung von Tieftemperatursensoren
Image Apparatur und Verfahren zur Degradationsprüfung
Image Hochtemperatur - Korrosionsinhibitoren zur Sicherung der Erweiterung des Anwendungsbereiches Abwärme nutzender Kälteerzeugung
Image Kryoflüssigkeitspumpen für tiefkalt verflüssigte Gase wie z.B. LIN, LOX, LHe, LH2, LNG, LAr
Image Reduktion der Schallemission von Darrieus-Windturbinen
Image Prüfverfahren für Außenluftfilter
Image Zertifizierbare Verbindungsarten in der Kryotechnik
Image Prüfverfahren zur dynamischen Alterung von Werkstoffen
Image Prüfbad-Haube
Image Beladungssensor für Adsorptionsfilter
Image Prüfverfahren für Hochtemperaturewärmepumpen-Öle
Image Pulse-Tube Kryokühler
Image Praktikum, Diplom, Master, Bachelor

Sie befinden sich hier:   /  Startseite


Klimatechnik-Betriebsoptimierung mittels maschinellem Lernen

BMWi Euronorm Innokom

01/2019–05/2021

Dr.-Ing. Thomas Oppelt

+49-351-4081-5321

in Bearbeitung

Klimasysteme intelligent regeln – hoher Komfort bei niedrigem Energiebedarf

Motivation

Die Energieeffizienz vieler klimatechnischer Systeme bleibt im Betrieb deutlich unterhalb des bei der Planung prognostizierten Wertes. Eine Ursache dafür ist, dass insbesondere komplexe Systeme mit mehreren Erzeugern, Speichern und Abnahmestellen häufig nicht optimal betrieben werden.

Ziel des Projekts

Entwicklung eines Betriebsoptimierungs-Tools für klimatechnische Systeme unter Verwendung von Methoden des maschinellen Lernens (ML) und Daten aus dem digitalen Gebäudemodell (Building Information Model, BIM):

  • Optimierungsziel: hohe Energieeffizienz bei gleichzeitig hoher Nutzerzufriedenheit
  • Einsparung von Betriebskosten, Energie und Kohlendioxidemissionen durch Effizienzsteigerung
  • fortlaufende selbstständige Verbesserung des ML-Algorithmus durch Lernen aus neuen Messdaten mit autoadaptiver Reaktion auf sich ändernde Bedingungen (Gebäude, Anlage, Nutzung, Smart-Meter für Echtzeitabrechnung von Energie und Medien, etc.)

Lösungsansatz

  •  Abbildung des thermisch-energetischen Verhaltens des realen Systems im Maschinen-Lern-System, Anlernen mittels BIM- und Messdaten sowie anhand eines digitalen Zwillings des Realsystems
  • Nutzung von ML-Methoden zur Prognose von Lasten (Wetter, Nutzungsverhalten)
  • automatische Klassifikation von Nutzungsszenarien, Fehlerdetektion
  • Integration verfügbarer Tools zur effizienten Raumströmungssimulation sowie zur Energiebedarfsberechnung
  • Co-Validierung von Optimierungstool, experimentellen Untersuchungen und digitalem Zwilling

Interessiert?

Treten Sie mit uns in Kontakt, wenn wir Ihr Interesse an einer Zusammenarbeit
geweckt haben: klima@ilkdresden.de


Ihre Anfrage zum Projekt

Weitere Projekte

Image

Wasser-Luft-Kühler-Kit für Helium Kompressoren in der Kryotechnik

autarker Betrieb wassergekühlter Kompressoren mittels add-on

Image

Innovativer magnetbasierter Parawasserstoffkonverter

Magnetische Gasseparation der Wasserstoffisomere

Image

Pulse-Tube Kryokühler

für kryogene Hochleistungsanwendungen