Current research projects

Image Hybrid- Fluid for CO2-Sublimation Cycle
Image Innovative Parahydrogen Generator Based on Magnets
Image Software for technical building equipment
Image Air-flow test rig for fan characteristic measurement
Image ZeroHeatPump
Image Performance tests of refrigerant compressors
Image Innovative Manufacturing Technologies for Cryosorption Systems
Image Reducing the filling quantity
Image Ionocaloric cooling
Image Thermal engines
Image Intelligent innovative power supply for superconducting coils
Image In-Situ-Swelling Behaviour of Polymer Materials in Flammable Fluids
Image Cryogenic liquid piston pumps for cold liquefied gases like LIN, LOX, LHe, LH2, LNG, LAr
Image All-in-one device for freeze-drying and production of biomaterial
Image CFE-Test of Cooker Hoods
Image Corrosion inhibitor for ammonia absorption systems

You are here:   /  Home


Development of a Cryogenic Magnetic Air Separation Unit

Federal Ministry for Economic Affairs and Climate Action

02/2022-07/2024

Erik Neuber

+49-351-4081-5122

Oxygen Enrichment by Applied Cryogenic Magnetohydrodynamics

Nowadays, for oxygen enrichment from air, various commercial options are available, among other things, pressure swing adsorption, cryogenic rectification, and membranes. Although well-established, most of these methods do have a relative high specific energy demand for small-to-medium production rates (in this context: 0–100 TPD (tonnes per day) of oxygen) and relative high purities (at least 90 vol% of oxygen) [1].

To close this gap, ILK Dresden intends to develop and optimise an efficient cryogenic magnetic air separation unit that enables oxygen enrichment by means of OGMS (open-gradient magnetic separation). Motivated by provisional first-shot experiments, for a first setup, the following parameters are being targeted:

  • Operating pressure: 1–3 bar(a);
  • Degree of purity: 95 vol% oxygen;
  • Production rate: 5 standard l/min oxygen;
  • Specific energy demand: 160–180 kWh/t oxygen;
  • Required time for start-up: 30–60 min;
  • Continuous operation;
  • Less maintenance requirements than pressure swing adsorption;
  • Comparable space requirements as pressure swing adsorption.

Moreover, based on the experimental results, the scalability of the system for higher production rates of up to 100 TPD oxygen shall be analysed.

For this patented technology, ILK Dresden is looking for industrial partners that have interest in financial participation, specific applications, or further developments.

Granted Patent:

DE 10 2021 109 146 A1


Your Request

Further Projects

Image

Swirl-free on the move...

...with a contra-rotating fan

Image

Measurement of insulated packaging

How efficient is my cool box?

Image

Hybrid- Fluid for CO2-Sublimation Cycle

Cryogenic cooling by CO2 sublimation

Image

Energy efficiency consulting - cogeneration systems

How efficient is my refrigeration system?

Image

Cold meter

The fast way to refrigerating capacity