Current research projects

Image Calibration of Low Temperature Sensors
Image Investigation of material-dependent parameters
Image Low Temperature Tribology
Image Industry 4.0 membrane heat and mass exchanger (i-MWÜ4.0)
Image Measurement of insulated packaging
Image Development of a Cryogenic Magnetic Air Separation Unit
Image Corrosion inhibitor for ammonia absorption systems
Image Investigation of materials
Image Innovative small helium liquefier
Image Low noise and non metallic liquid-helium cryostat
Image Performance tests of refrigerant compressors
Image Non- invasive flow measurements
Image Investigation according to DIN EN ISO 14903
Image Electrochemical decontamination of electrically conducting surfaces „EDeKo II“
Image CFE-Test of Cooker Hoods
Image Innovative Parahydrogen Generator Based on Magnets

You are here:   /  Home


Development of a Cryogenic Magnetic Air Separation Unit

Federal Ministry for Economic Affairs and Climate Action

02/2022-07/2024

Erik Neuber

+49-351-4081-5122

Oxygen Enrichment by Applied Cryogenic Magnetohydrodynamics

Nowadays, for oxygen enrichment from air, various commercial options are available, among other things, pressure swing adsorption, cryogenic rectification, and membranes. Although well-established, most of these methods do have a relative high specific energy demand for small-to-medium production rates (in this context: 0–100 TPD (tonnes per day) of oxygen) and relative high purities (at least 90 vol% of oxygen) [1].

To close this gap, ILK Dresden intends to develop and optimise an efficient cryogenic magnetic air separation unit that enables oxygen enrichment by means of OGMS (open-gradient magnetic separation). Motivated by provisional first-shot experiments, for a first setup, the following parameters are being targeted:

  • Operating pressure: 1–3 bar(a);
  • Degree of purity: 95 vol% oxygen;
  • Production rate: 5 standard l/min oxygen;
  • Specific energy demand: 160–180 kWh/t oxygen;
  • Required time for start-up: 30–60 min;
  • Continuous operation;
  • Less maintenance requirements than pressure swing adsorption;
  • Comparable space requirements as pressure swing adsorption.

Moreover, based on the experimental results, the scalability of the system for higher production rates of up to 100 TPD oxygen shall be analysed.

For this patented technology, ILK Dresden is looking for industrial partners that have interest in financial participation, specific applications, or further developments.

Granted Patent:

DE 10 2021 109 146 A1


Your Request

Further Projects

Image

High temperature heat pump

Using waste heat from industrial processes

Image

Air-water heat pumps

Test according DIN EN 14511 and 14825

Image

Micro heat exchangers in refrigeration

3D-printing of micro heat exchangers

Image

Electrochemical decontamination of electrically conducting surfaces „EDeKo II“

Improvement of sanitary prevention by electrochemical decontamination